刷题-合作为王

题目描述

前几天,叶老师带的浙江理工大学又有同学获得国际大学生程序设计竞赛亚洲区金牌了。
大学生的竞赛与中小学竞赛略有区别,他们是3个人组队。就在你们比赛的当天,叶老师派了2个队去参加亚洲区总决赛了。
可是要如何挑选出3个默契的同学组成队伍呢?叶老师设置了一个游戏,看哪个队伍能获胜。当然,你的任务是帮助这个队伍获得胜利,每个队伍都有一定的资源。
游戏的规则如下:
叶老师给了一堆正整数写在纸牌上放在桌上,3个同学不能商量,每个人取出1张纸牌(当然不会取到同一张纸牌),然后把这纸牌上3个数加起来,本次消耗的资源是3个数的和。然后把加起来的数写在一个新的纸牌上,放回到桌上。继续第二轮…直到桌子上只剩下最后一张纸牌。每次的资源消耗和即为这个队伍的总资源消耗分。如果桌上最后纸牌数超过1张,总消耗资源直接变成9223372036854775807。

输入
第一行一个整数n(1 <= n <= 100000)
第二行n个正整数,为纸牌上的数字,每个数字不超过10000.
输出
输出一个数,为该队伍消耗资源的最小值。
样例输入 Copy
3
9 8 7
样例输出 Copy
24

解答:

这个问题的核心是寻找一种方法,使得每次选取的3个数的和尽可能的小,这样才能最小化资源消耗。这是一个典型的贪心问题,使用一个优先队列(最小堆)就可以解决。

在C语言中,我们并没有内置的优先队列可以直接使用,所以需要借助一个二叉堆(二叉堆本质上就是一个完全二叉树,并且满足任一节点的值都小于其孩子节点的值,这样的二叉堆叫做最小堆)来实现。

下面是使用C语言解决这个问题的代码:

#include 
#include 

#define MAXN 100010
#define ll long long
#define INF 0x7fffffffffffffff

int heap[MAXN], size;

void up(int x) {
    while (x > 1) {
        if (heap[x] >= heap[x >> 1]) break;
        int temp = heap[x];
        heap[x] = heap[x >> 1];
        heap[x >> 1] = temp;
        x >>= 1;
    }
}

void down(int x) {
    while ((x << 1) <= size) {
        int temp = x;
        if (heap[temp] > heap[x << 1]) temp = x << 1;
        if ((x << 1 | 1) <= size && heap[temp] > heap[x << 1 | 1]) temp = x << 1 | 1;
        if (temp == x) break;
        int t = heap[x];
        heap[x] = heap[temp];
        heap[temp] = t;
        x = temp;
    }
}

void push(int val) {
    heap[++size] = val;
    up(size);
}

int top() {
    return heap[1];
}

void pop() {
    heap[1] = heap[size--];
    down(1);
}

int main() {
    int n;
    scanf("%d", &n);
    for (int i = 1; i <= n; i++) {
        int x;
        scanf("%d", &x);
        push(x);
    }
    ll ans = 0;
    while (size >= 3) {
        ll sum = top();
        pop();
        sum += top();
        pop();
        sum += top();
        pop();
        ans += sum;
        push(sum);
    }
    if (size > 1) ans = INF;
    printf("%lld\n", ans);
    return 0;
}

这段代码首先将所有的数放入到一个最小堆中,然后每次取出堆顶的三个数,计算他们的和,再把这个和放回到堆中。重复这个过程,直到堆中的元素少于3个。最后输出所有取出的数的和,即为答案。如果最后堆中的元素大于1个,直接输出一个非常大的数(9223372036854775807)。

你可能感兴趣的:(贪心问题,优先队列(最小堆))