- 论文笔记(七十)DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning(二)
墨绿色的摆渡人
文章论文阅读
DeepSeek-R1:IncentivizingReasoningCapabilityinLLMsviaReinforcementLearning(二)文章概括摘要:2.方法2.3.DeepSeek-R1:冷启动强化学习2.3.1.冷启动2.3.2.面向推理的强化学习2.3.3.拒绝采样与监督微调2.3.4.面向所有场景的强化学习2.4.蒸馏:赋予小模型推理能力文章概括引用:@article{g
- Deepseek又开源了颠覆性的新模型Janus-Pro
AI生成曾小健
人工智能
Deepseek又开源了颠覆性的新模型Janus-ProDeepseek真的是一点都不休息啊,除夕还发模型刚刚推出并开源了Janus-Pro,作为之前Janus的全面升级版,这次它不仅参数从1B扩展到7B而且在多模态理解与生成能力上实现飞跃,还大幅提升了图像生成的稳定性和细节表现!先介绍一下Janus架构☝️Janus是为了解决多模态AI领域的一个根本性矛盾:“理解”与“生成”任务对视觉表征的需求
- 从众中取优:开源Agent市场深度调研,近20款主流开源Agent框架的技术亮点与适用场景深度剖析[Multi-Agent 框架详解]
汀、人工智能
AIAgent人工智能Agent大模型AIAgentMultiAgentsingleAgent智能体
从众中取优:开源Agent市场深度调研,近20款主流开源Agent框架的技术亮点与适用场景深度剖析1.背景代理(Agent)指能自主感知环境并采取行动实现目标的智能体,即AI作为一个人或一个组织的代表,进行某种特定行为和交易,降低一个人或组织的工作复杂程度,减少工作量和沟通成本。目前,我们在探索Agent的应用方向,借此机会调研学习了一下现在主流的Agent框架,这篇文章也是我们调研过程的记录。1
- pytorch深度Q网络
纠结哥_Shrek
pytorch人工智能python
DQN引入了深度神经网络来近似Q函数,解决了传统Q-learning在处理高维状态空间时的瓶颈,尤其是在像Atari游戏这样的复杂环境中。DQN的核心思想是使用神经网络Q(s,a;θ)Q(s,a;\theta)Q(s,a;θ)来近似Q值函数,其中θ\thetaθ是神经网络的参数。DQN的关键创新包括:经验回放(ExperienceReplay):在强化学习中,当前的学习可能会依赖于最近的经验,容易
- 全网最新最全AI写作工具大汇总(含14个AI写作工具)
一只贴代码君
AI写作chatgpt机器学习算法人工智能数据库
笔灵AI写作网址:https://ibiling.cn/?from=ai-bot描述:面向专业写作领域的AI写作工具。Paperpal网址:https://www.editage.cn/paperpal?utm_source=ai-bot&utm_medium=Banner&utm_campaign=Banner描述:英文论文写作助手。新华妙笔网址:https://miaobi.xinhuaskl
- Cursor AI
Anjgst
人工智能
CursorAI完整指南:AI驱动的新一代编程工具目录简介主要特性安装与设置核心功能详解使用技巧价格方案常见问题简介CursorAI是一个基于VSCode的革命性AI驱动代码编辑器,它将人工智能与传统编程环境完美结合,为开发者提供更智能、更高效的编程体验。主要特性1.AI智能补全Tab智能补全:通过AI预测并补全多行代码上下文感知:理解整个项目结构和编码风格多语言支持:支持所有主流编程语言2.代码
- 【DeepSeek】复现DeepSeek R1?快来看这个Open R1项目实践指南~
FF-Studio
DeepSeekR1语言模型自然语言处理深度学习人工智能
OpenR1项目基于DeepSeek-R1的技术报告和方法论,公开并复现R1的训练管线,并且希望所有开发者都能在这个基础上搭建自己的研究或应用。笔者研读了大量资料,对OpenR1的愿景、原理及在实践层面的具体操作,产生了许多想法。因此,这篇博客会从最初的概念入手,带领大家了解OpenR1的原理与技术细节,并侧重讲解其中最为关键的强化学习训练方法之一——GRPO(群组相对策略优化,GroupRela
- 实战LLM强化学习——使用GRPO(DeepSeek R1出圈算法)
FF-Studio
DeepSeekR1算法语言模型人工智能自然语言处理机器学习
——关于使用Unsloth库、LoRa微调及GRPOTrainer自定义奖励函数实现“只输出10个英语单词”的探索为什么要进行“只输出10个英文单词”的极端尝试?在大模型的训练或微调当中,大多数场景我们都希望它能“自由发挥”,给出越丰富越好的答案。但,为了更好的理解强化学习在LLM训练过程中发挥的意义,也为了学习GPRO这个强化学习算法,笔者出此题目,方便大家学习理解。GRPO(GroupRela
- 2025年01月30日Github流行趋势
油泼辣子多加
GitHub每日趋势github
项目名称:Janus项目地址url:https://github.com/deepseek-ai/Janus项目语言:Python历史star数:11942今日star数:2187项目维护者:learningpro,hills-code,TheOneTrueGuy,mowentian,soloice项目简介:Janus系列:统一多模态理解和生成模型项目名称:DeepSeek-Coder项目地址ur
- 如何获取 DeepSeek 多模态大模型 Janus-Pro-7B
Channing Lewis
AI#AGI#NLPdeepseek
DeepSeek团队近期开源了新一代多模态模型Janus-Pro-7B,该模型在图像生成和多模态理解方面表现卓越,超越了OpenAI的DALL-E3,并在基准测试中取得了优异成绩。Janus-Pro-7B的代码和模型参数已经分别在github和huggingface上开源,我们拉取到本地后就能运行使用了。以下是如何获取Janus-Pro-7B模型的详细指南:步骤一:克隆代码库gitclonehtt
- 启元世界(Inspir.ai)技术浅析(一)
爱研究的小牛
AIGC—游戏制作人工智能机器学习AIGC深度学习
启元世界(Inspir.ai)作为全球领先的通用人工智能平台公司,自2017年成立以来,一直致力于通过人工智能技术提升产业效能和生活体验。公司汇聚了来自全球顶尖公司和高等学府的技术专家,专注于深度强化学习、推荐算法以及机器学习系统平台等前沿领域,并成功将人工智能技术应用于数字娱乐、智能决策和机器人等多个领域。一、核心技术启元世界在人工智能领域取得了多项突破性进展,其核心技术涵盖了以下几个方面:1.
- AI学习指南Ollama篇-Ollama的多模态应用探索
俞兆鹏
AI学习指南ai
AI学习指南应用篇-Ollama的多模态应用探索一、引言(一)背景介绍随着大语言模型(LLM)的发展,多模态应用(结合文本、图像、语音等)成为新的趋势。多模态模型能够处理多种类型的数据,如文本、图像和语音,从而提供更丰富、更智能的交互体验。Ollama作为本地部署工具,支持多模态模型的运行,为开发者提供了强大的功能。(二)文章目标本文将探讨Ollama在多模态应用中的可能性,并通过实际案例展示如何
- Rust中奖励函数的实现与应用
AI天才研究院
计算AI大模型企业级应用开发实战大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Rust中奖励函数的实现与应用作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:Rust,奖励函数,强化学习,机器学习,状态空间1.背景介绍1.1问题的由来在机器学习领域,特别是在强化学习(ReinforcementLearning,RL)中,奖励函数(RewardFunction)扮演着至关重要的角色。它定义了智能体(Agent)在执行任务时
- 《向量数据库指南》——MoE应用:解锁深度学习新境界的钥匙
大禹智库
《实战AI智能体》《向量数据库指南》深度学习人工智能向量数据库大禹智库低代码MoE模型
在深度学习的广阔天地里,混合专家(MoE)模型如同一把锐利的钥匙,正逐步解锁着各种复杂应用场景的新境界。作为大禹智库的向量数据库高级研究员,同时也是《向量数据库指南》的作者,我深感MoE模型在推动AI技术向前发展中所扮演的重要角色。今天,我将带大家深入探讨MoE模型在自然语言处理、计算机视觉以及多模态学习等领域的应用,并巧妙引导大家通过《向量数据库指南》获取更多干货和深度实战经验。一、自然语言处理
- LLM based Single Agent System
AGI大模型与大数据研究院
大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LLM-BasedSingleAgentSystem:ANewEraofIntelligentAutomation关键词:大语言模型,单智能体系统,强化学习,自然语言处理,智能自动化1.背景介绍近年来,随着深度学习技术的快速发展,大语言模型(LLM)在自然语言处理(NLP)领域取得了突破性进展。LLM凭借其强大的语言理解和生成能力,正在改变着人们与信息交互的方式。同时,人工智能领域的另一个重要研究
- 自动驾驶(Automated Driving)系统组成和主要技术--以思维导图形式介绍
大连海事的亲外甥
自动驾驶人工智能机器学习
一、自动驾驶概念介绍自动驾驶是指汽车依靠传感器、高精度地图和复杂的算法等,不需要驾驶员操作而自动完成驾驶的技术。二、自动驾驶系统组成和主要技术架构图思维导图形式绘制1、感知层传感器模块:包括摄像头、激光雷达、毫米波雷达和超声波雷达等,用于获取车辆周围环境的数据,如道路状况、其他车辆、行人和障碍物等。定位传感器模块:包括GNSS(全球导航卫星系统)、INS(惯性导航系统)和视觉SLAM等,用于确定车
- AI常见的算法
纠结哥_Shrek
人工智能算法
人工智能(AI)中常见的算法分为多个领域,如机器学习、深度学习、强化学习、自然语言处理和计算机视觉等。以下是一些常见的算法及其用途:1.机器学习(MachineLearning)监督学习(SupervisedLearning)线性回归(LinearRegression):用于预测连续值,如房价预测。逻辑回归(LogisticRegression):用于分类问题,如垃圾邮件检测。支持向量机(SVM)
- 【 书生·浦语大模型实战营】学习笔记(五):LMDeploy 量化部署
GoAI
深入浅出LLM深入浅出AI大模型LLM部署人工智能LMDeploy
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI1;;爱好者学习,性价比非常高!加入星球➡️点击链接
- 为什么多模态大模型中使用Q-Former的工作变少了?附Q-Former结构简介
同屿Firmirin
多模态大模型深度学习人工智能面试
面试中遇到的问题,自己在实践中注意到了却没有深究原因,没有回答好,特此记录和探讨这个问题。多模态大模型中需要一个输入投影模块,将视觉特征投射到LLM能理解的语言特征维度,这里就可以选择各种不同的模块。LLaVA最初用了简单的线性投射,然而作者提到这么做是为了做实验更快一点,使用复杂的模块可能会有更好的效果。后来就有用MLP的,代表工作有LLaVA后续系列、Intern-VL。还有用Q-Former
- 【DL】神经网络与机器学习基础知识介绍(一)
MengWoods
深度学习机器学习神经网络人工智能
原博客:https://mengwoods.github.io/post/dl/009-dl-fundamental/文章目录基本通用概念梯度下降算法数据工程训练技术偏差与方差防止过拟合评估指标决策树基本通用概念机器学习的类型:监督学习(SupervisedLearning):分类,回归无监督学习(UnsupervisedLearning):聚类,降维强化学习(ReinforcementLearn
- 【AI论文】Omni-RGPT:通过标记令牌统一图像和视频的区域级理解
东临碣石82
人工智能
摘要:我们提出了Omni-RGPT,这是一个多模态大型语言模型,旨在促进图像和视频的区域级理解。为了在时空维度上实现一致的区域表示,我们引入了TokenMark,这是一组在视觉特征空间中突出目标区域的标记。这些标记通过使用区域提示符(例如,边框或掩码)直接嵌入到空间区域中,并同时融入到文本提示符中以指定目标,从而在视觉标记和文本标记之间建立了直接联系。为了进一步支持无需轨迹的稳健视频理解,我们引入
- 提示词设计流程 ——《如何从0开始构建一个基于强化学习的AI智能体》使用场景为例
由数入道
提示词工程提示词工程人工智能
《如何从0开始构建一个基于强化学习的AI智能体》使用场景提示词设计流程是否识别改进点分析评估结果根据反馈调整提示词细化内容要求增强专业术语调整约束条件验证专业性检查内容准确性评估逻辑连贯性上下文提供角色设定指令描述输入问题设计约束条件设定输出格式定义示例参考提供开始明确目标与需求确定任务类型定义预期结果识别关键问题结构化提示词设计生成初始提示词使用AI生成内容评估生成内容内容是否满意?完成提示词提
- 【DeepSeek】大模型强化学习训练GRPO算法,你学会了吗?
FF-Studio
DeepSeekR1算法
如果你还不知道GRPO,你可以先看这篇帖子:【DeepSeek】一文详解GRPO算法——为什么能减少大模型训练资源?看了论文跟没看一样?做两道题练练!曾经最痛恨的应试教育,却能让你深深记住这知识点。由ChatGPTo1pro生成,o1pro的输出token和写作能力比DeepSeekR1强。GRPO原论文链接:https://arxiv.org/abs/2402.03300GRPO中译文链接:ht
- Janus Pro:DeepSeek 开源革新,多模态 AI 的未来
后端
JanusPro是DeepSeek开发的一个开源多模态人工智能框架,它通过集成视觉和语言处理能力,提供了高性能的多模态任务处理能力。在线体验:https://deepseek-januspro.com/背景JanusPro于2025年1月发布,是一个开源的多模态AI框架,能够同时处理视觉和语言信息。它采用了独特的多模态架构,包括解耦的视觉编码框架和统一的Transformer架构,以及SigLIP
- 《深度剖析Q-learning中的Q值:解锁智能决策的密码》
人工智能深度学习
在人工智能的飞速发展进程中,强化学习作为一个关键领域,为智能体与环境交互并学习最优行为策略提供了有效框架。其中,Q-learning算法凭借其独特的魅力,在机器人控制、自动驾驶、游戏AI等众多领域大放异彩。而Q-learning中的Q值,更是理解这一算法的核心关键,它如同智能体的“智慧密码”,指导着智能体在复杂环境中做出最优决策。Q值的直观定义:行为价值的“预言家”从直观层面理解,Q值代表着智能体
- 【面试】【前端】【性能优化】前端性能优化总结
患得患失949
面试考题专栏(前后端)面试前端性能优化
一、前端性能优化总结前端性能优化是提升用户体验的重要手段,面试中涉及的问题往往从理论到实践全面考察候选人对优化的理解。以下从性能优化的原则、方法、工具和常见问题解答入手,提供全面的总结。(一)性能优化的基本原则用户体验:少于0.1秒:用户不会注意到延迟。少于1秒:用户感知延迟但不会中断操作。少于10秒:用户会继续等待响应。超过10秒:用户将放弃等待。优化目标:首屏加载时间≤3秒。用户操作响应时间≤
- 火出圈的DeepSeeK R1详解
清风AI
深度学习人工智能神经网络python计算机视觉conda
各位宝子们,新年好!模型特性DeepSeek-R1是一款创新的AI推理模型,具有多项独特特性:高性能推理能力:在数学、代码和自然语言推理等任务上表现出色,性能对标OpenAIo1正式版。强化学习驱动的训练:采用大规模强化学习技术,仅需极少量标注数据,显著提升推理能力。长链推理(CoT)支持:思维链长度可达数万字,能逐步分解复杂问题,通过多步骤逻辑推理解决问题。模型蒸馏支持:允许用户利用模型输出训练
- 江大白 | 斯坦福大学教授李飞飞团队:关于 2024年人工智能发展报告总结!
双木的木
深度学习拓展阅读人工智能
本文来源公众号“江大白”,仅用于学术分享,侵权删,干货满满。原文链接:斯坦福大学教授李飞飞团队:关于2024年人工智能发展报告总结!导读斯坦福大学教授李飞飞团队总结、解析了2024年人工智能发展报告,涵盖AI研究进展、技术性能提升、经济影响及医疗教育突破,重点分析大型模型成本、多模态模型崛起、AI可靠性挑战和生成式AI影响,是了解AI现状与未来的必读内容!斯坦福大学教授李飞飞团队关于2024年人工
- DeepSeek:通用人工智能的技术前沿与创新突破
热爱分享的博士僧
人工智能
一、DeepSeek的定位与背景DeepSeek(深度求索)是一家聚焦**通用人工智能(AGI)**研发的中国科技公司,成立于2023年,核心团队由全球顶尖AI科学家、工程师组成。公司以“探索智能本质,实现AGI造福人类”为使命,致力于突破大模型技术的边界,推动AI从专用向通用演进。其研发方向覆盖自然语言处理、多模态交互、强化学习等领域,并在模型架构、训练效率及实际应用场景中取得显著成果。二、核心
- 【人工智能】Python常用库-TensorFlow常用方法教程
IT古董
人工智能机器学习Python人工智能pythontensorflow机器学习
TensorFlow是一个广泛应用的开源深度学习框架,支持多种机器学习任务,如深度学习、神经网络、强化学习等。以下是TensorFlow的详细教程,涵盖基础使用方法和示例代码。1.安装与导入安装TensorFlow:pipinstalltensorflow导入TensorFlow:importtensorflowastfimportnumpyasnp验证安装:print(tf.__version_
- 继之前的线程循环加到窗口中运行
3213213333332132
javathreadJFrameJPanel
之前写了有关java线程的循环执行和结束,因为想制作成exe文件,想把执行的效果加到窗口上,所以就结合了JFrame和JPanel写了这个程序,这里直接贴出代码,在窗口上运行的效果下面有附图。
package thread;
import java.awt.Graphics;
import java.text.SimpleDateFormat;
import java.util
- linux 常用命令
BlueSkator
linux命令
1.grep
相信这个命令可以说是大家最常用的命令之一了。尤其是查询生产环境的日志,这个命令绝对是必不可少的。
但之前总是习惯于使用 (grep -n 关键字 文件名 )查出关键字以及该关键字所在的行数,然后再用 (sed -n '100,200p' 文件名),去查出该关键字之后的日志内容。
但其实还有更简便的办法,就是用(grep -B n、-A n、-C n 关键
- php heredoc原文档和nowdoc语法
dcj3sjt126com
PHPheredocnowdoc
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
<?
- overflow的属性
周华华
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 《我所了解的Java》——总体目录
g21121
java
准备用一年左右时间写一个系列的文章《我所了解的Java》,目录及内容会不断完善及调整。
在编写相关内容时难免出现笔误、代码无法执行、名词理解错误等,请大家及时指出,我会第一时间更正。
&n
- [简单]docx4j常用方法小结
53873039oycg
docx
本代码基于docx4j-3.2.0,在office word 2007上测试通过。代码如下:
import java.io.File;
import java.io.FileInputStream;
import ja
- Spring配置学习
云端月影
spring配置
首先来看一个标准的Spring配置文件 applicationContext.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi=&q
- Java新手入门的30个基本概念三
aijuans
java新手java 入门
17.Java中的每一个类都是从Object类扩展而来的。 18.object类中的equal和toString方法。 equal用于测试一个对象是否同另一个对象相等。 toString返回一个代表该对象的字符串,几乎每一个类都会重载该方法,以便返回当前状态的正确表示.(toString 方法是一个很重要的方法) 19.通用编程:任何类类型的所有值都可以同object类性的变量来代替。
- 《2008 IBM Rational 软件开发高峰论坛会议》小记
antonyup_2006
软件测试敏捷开发项目管理IBM活动
我一直想写些总结,用于交流和备忘,然都没提笔,今以一篇参加活动的感受小记开个头,呵呵!
其实参加《2008 IBM Rational 软件开发高峰论坛会议》是9月4号,那天刚好调休.但接着项目颇为忙,所以今天在中秋佳节的假期里整理了下.
参加这次活动是一个朋友给的一个邀请书,才知道有这样的一个活动,虽然现在项目暂时没用到IBM的解决方案,但觉的参与这样一个活动可以拓宽下视野和相关知识.
- PL/SQL的过程编程,异常,声明变量,PL/SQL块
百合不是茶
PL/SQL的过程编程异常PL/SQL块声明变量
PL/SQL;
过程;
符号;
变量;
PL/SQL块;
输出;
异常;
PL/SQL 是过程语言(Procedural Language)与结构化查询语言(SQL)结合而成的编程语言PL/SQL 是对 SQL 的扩展,sql的执行时每次都要写操作
- Mockito(三)--完整功能介绍
bijian1013
持续集成mockito单元测试
mockito官网:http://code.google.com/p/mockito/,打开documentation可以看到官方最新的文档资料。
一.使用mockito验证行为
//首先要import Mockito
import static org.mockito.Mockito.*;
//mo
- 精通Oracle10编程SQL(8)使用复合数据类型
bijian1013
oracle数据库plsql
/*
*使用复合数据类型
*/
--PL/SQL记录
--定义PL/SQL记录
--自定义PL/SQL记录
DECLARE
TYPE emp_record_type IS RECORD(
name emp.ename%TYPE,
salary emp.sal%TYPE,
dno emp.deptno%TYPE
);
emp_
- 【Linux常用命令一】grep命令
bit1129
Linux常用命令
grep命令格式
grep [option] pattern [file-list]
grep命令用于在指定的文件(一个或者多个,file-list)中查找包含模式串(pattern)的行,[option]用于控制grep命令的查找方式。
pattern可以是普通字符串,也可以是正则表达式,当查找的字符串包含正则表达式字符或者特
- mybatis3入门学习笔记
白糖_
sqlibatisqqjdbc配置管理
MyBatis 的前身就是iBatis,是一个数据持久层(ORM)框架。 MyBatis 是支持普通 SQL 查询,存储过程和高级映射的优秀持久层框架。MyBatis对JDBC进行了一次很浅的封装。
以前也学过iBatis,因为MyBatis是iBatis的升级版本,最初以为改动应该不大,实际结果是MyBatis对配置文件进行了一些大的改动,使整个框架更加方便人性化。
- Linux 命令神器:lsof 入门
ronin47
lsof
lsof是系统管理/安全的尤伯工具。我大多数时候用它来从系统获得与网络连接相关的信息,但那只是这个强大而又鲜为人知的应用的第一步。将这个工具称之为lsof真实名副其实,因为它是指“列出打开文件(lists openfiles)”。而有一点要切记,在Unix中一切(包括网络套接口)都是文件。
有趣的是,lsof也是有着最多
- java实现两个大数相加,可能存在溢出。
bylijinnan
java实现
import java.math.BigInteger;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class BigIntegerAddition {
/**
* 题目:java实现两个大数相加,可能存在溢出。
* 如123456789 + 987654321
- Kettle学习资料分享,附大神用Kettle的一套流程完成对整个数据库迁移方法
Kai_Ge
Kettle
Kettle学习资料分享
Kettle 3.2 使用说明书
目录
概述..........................................................................................................................................7
1.Kettle 资源库管
- [货币与金融]钢之炼金术士
comsci
金融
自古以来,都有一些人在从事炼金术的工作.........但是很少有成功的
那么随着人类在理论物理和工程物理上面取得的一些突破性进展......
炼金术这个古老
- Toast原来也可以多样化
dai_lm
androidtoast
Style 1: 默认
Toast def = Toast.makeText(this, "default", Toast.LENGTH_SHORT);
def.show();
Style 2: 顶部显示
Toast top = Toast.makeText(this, "top", Toast.LENGTH_SHORT);
t
- java数据计算的几种解决方法3
datamachine
javahadoopibatisr-languer
4、iBatis
简单敏捷因此强大的数据计算层。和Hibernate不同,它鼓励写SQL,所以学习成本最低。同时它用最小的代价实现了计算脚本和JAVA代码的解耦,只用20%的代价就实现了hibernate 80%的功能,没实现的20%是计算脚本和数据库的解耦。
复杂计算环境是它的弱项,比如:分布式计算、复杂计算、非数据
- 向网页中插入透明Flash的方法和技巧
dcj3sjt126com
htmlWebFlash
将
Flash 作品插入网页的时候,我们有时候会需要将它设为透明,有时候我们需要在Flash的背面插入一些漂亮的图片,搭配出漂亮的效果……下面我们介绍一些将Flash插入网页中的一些透明的设置技巧。
一、Swf透明、无坐标控制 首先教大家最简单的插入Flash的代码,透明,无坐标控制: 注意wmode="transparent"是控制Flash是否透明
- ios UICollectionView的使用
dcj3sjt126com
UICollectionView的使用有两种方法,一种是继承UICollectionViewController,这个Controller会自带一个UICollectionView;另外一种是作为一个视图放在普通的UIViewController里面。
个人更喜欢第二种。下面采用第二种方式简单介绍一下UICollectionView的使用。
1.UIViewController实现委托,代码如
- Eos平台java公共逻辑
蕃薯耀
Eos平台java公共逻辑Eos平台java公共逻辑
Eos平台java公共逻辑
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月1日 17:20:4
- SpringMVC4零配置--Web上下文配置【MvcConfig】
hanqunfeng
springmvc4
与SpringSecurity的配置类似,spring同样为我们提供了一个实现类WebMvcConfigurationSupport和一个注解@EnableWebMvc以帮助我们减少bean的声明。
applicationContext-MvcConfig.xml
<!-- 启用注解,并定义组件查找规则 ,mvc层只负责扫描@Controller -->
<
- 解决ie和其他浏览器poi下载excel文件名乱码
jackyrong
Excel
使用poi,做传统的excel导出,然后想在浏览器中,让用户选择另存为,保存用户下载的xls文件,这个时候,可能的是在ie下出现乱码(ie,9,10,11),但在firefox,chrome下没乱码,
因此必须综合判断,编写一个工具类:
/**
*
* @Title: pro
- 挥洒泪水的青春
lampcy
编程生活程序员
2015年2月28日,我辞职了,离开了相处一年的触控,转过身--挥洒掉泪水,毅然来到了兄弟连,背负着许多的不解、质疑——”你一个零基础、脑子又不聪明的人,还敢跨行业,选择Unity3D?“,”真是不自量力••••••“,”真是初生牛犊不怕虎•••••“,••••••我只是淡淡一笑,拎着行李----坐上了通向挥洒泪水的青春之地——兄弟连!
这就是我青春的分割线,不后悔,只会去用泪水浇灌——已经来到
- 稳增长之中国股市两点意见-----严控做空,建立涨跌停版停牌重组机制
nannan408
对于股市,我们国家的监管还是有点拼的,但始终拼不过飞流直下的恐慌,为什么呢?
笔者首先支持股市的监管。对于股市越管越荡的现象,笔者认为首先是做空力量超过了股市自身的升力,并且对于跌停停牌重组的快速反应还没建立好,上市公司对于股价下跌没有很好的利好支撑。
我们来看美国和香港是怎么应对股灾的。美国是靠禁止重要股票做空,在
- 动态设置iframe高度(iframe高度自适应)
Rainbow702
JavaScriptiframecontentDocument高度自适应局部刷新
如果需要对画面中的部分区域作局部刷新,大家可能都会想到使用ajax。
但有些情况下,须使用在页面中嵌入一个iframe来作局部刷新。
对于使用iframe的情况,发现有一个问题,就是iframe中的页面的高度可能会很高,但是外面页面并不会被iframe内部页面给撑开,如下面的结构:
<div id="content">
<div id=&quo
- 用Rapael做图表
tntxia
rap
function drawReport(paper,attr,data){
var width = attr.width;
var height = attr.height;
var max = 0;
&nbs
- HTML5 bootstrap2网页兼容(支持IE10以下)
xiaoluode
html5bootstrap
<!DOCTYPE html>
<html>
<head lang="zh-CN">
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">