此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授。
PDF格式教材下载 Sequences and Series
本系列学习笔记PDF下载(Academia.edu) MOOCULUS-2 Solution
Summary
Exercises
1. Compute $$\lim_{x\to\infty} x^{1/x}$$
Solution:
$$\lim_{x\to\infty} x^{1/x}=\lim_{x\to\infty}(e^{\ln x})^{1/x} =\lim_{x\to\infty}e^{\frac{\ln x}{x}}$$ By L'Hopital's rule, we have $$\lim_{x\to\infty}\frac{\ln x}{x}=\lim_{x\to\infty}\frac{1/x}{1}=0$$ Thus, the result is $$\lim_{x\to\infty} x^{1/x}=e^0=1$$
2. Use the squeeze theorem to show that $$\lim_{n\to\infty} {n!\over n^n}=0$$
Solution:
$$0<\frac{n!}{n^n}=\frac{1}{n}\cdot\frac{2}{n}\cdot\cdots\cdots\cdot\frac{n}{n} < \frac{1}{n}\to0\ (n\to\infty)$$ According to the squeeze theorem, $$\lim_{n\to\infty} {n!\over n^n}=0$$
3. Determine whether $$\{\sqrt{n+47}-\sqrt{n}\}_{n=0}^\infty$$ converges or diverges. If it converges, compute the limit.
Solution:
$$\sqrt{n+47}-\sqrt{n}=\frac{47}{\sqrt{n+47}+\sqrt{n}}$$ Hence it is decreasing. On the other hand, $$\sqrt{n+47}-\sqrt{n}\ge0$$ that is, it is bounded below. Thus, it is convergent. And we have $$\lim_{x\to\infty}(\sqrt{n+47}-\sqrt{n})=\lim_{n\to\infty}\frac{47}{\sqrt{n+47}+\sqrt{n}}=0$$ 4. Determine whether $$\left\{{n^2+1\over (n+1)^2}\right\}_{n=0}^\infty$$ converges or diverges. If it converges, compute the limit.
Solution:
$${(n+1)^2\over n^2+1}=1+{2n\over n^2+1}$$ which is decreasing. Thus $${n^2+1\over (n+1)^2}$$ is increasing. On the other hand, $${n^2+1\over (n+1)^2}={n^2+1\over n^2+2n+1} < 1$$ which means it is bounded above. Thus it is convergent. And we have $$\lim_{n\to\infty}{n^2+1\over (n+1)^2}=\lim_{n\to\infty}\frac{n^2+1}{n^2+2n+1}=\lim_{n\to\infty}\frac{1+\frac{1}{n^2}}{1+\frac{2}{n}+\frac{1}{n^2}}=1$$
5. Determine whether $$\left\{{n+47\over\sqrt{n^2+3n}}\right\}_{n=1}^\infty$$ converges or diverges. If it converges, compute the limit.
Solution:
$$f^{'}(n)=\frac{\sqrt{n^2+3n}-(n+47)\cdot{1\over2}\cdot{1\over\sqrt{n^2+3n}}\cdot(2n+3)}{n^2+3n} < 0$$ $$\Longleftrightarrow \sqrt{n^2+3n}-(n+47)\cdot{1\over2}\cdot{1\over\sqrt{n^2+3n}}\cdot(2n+3) < 0$$ $$\Longleftrightarrow n^2+3n < {1\over2}\cdot(2n^2+97n+141)$$ $$\Longleftrightarrow n^2+3n < n^2+48.5n+70.5$$ The last inequality is obvious. Thus it is decreasing. On the other hand, $${n+47\over\sqrt{n^2+3n}}>0$$ which means it is bounded below. Hence it is convergent. And we have $$\lim_{n\to\infty}{n+47\over\sqrt{n^2+3n}}=\lim_{n\to\infty}{1+\frac{47}{n}\over\sqrt{1+\frac{3}{n}}}=1$$
6. Determine whether $$\left\{{2^n\over n!}\right\}_{n=0}^\infty$$ converges or diverges. If it converges, compute the limit.
Solution:
$${a_{n+1}\over a_n}={\frac{2^{n+1}}{(n+1)!}\over\frac{2^n}{n!}}={2\over n+1} < 1$$ when $n > 2$. Thus it is decreasing. On the other hand, $${2^n\over n!}>0$$ which means it is bounded below. Thus it is convergent. $$0<{2^n\over n!}={2\over n}\cdot {2\over n-1} \cdot\cdots\cdots\cdot{2\over3}\cdot{2\over2}\cdot{2\over1} < ({2\over3})^{n-2}\cdot2\to0\ (n\to\infty)$$ According to squeeze theorem we have $$\lim_{n\to\infty}{2^n\over n!}=0$$