- Hugging Face挑战DeepSeek,AI开源竞赛升级!
新加坡内哥谈技术
人工智能深度学习语言模型学习
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/DeepSeek的R1推理模型刚刚引发全球轰动,开源AI界的“顶流”HuggingFac
- LLM based Single Agent System
AGI大模型与大数据研究院
大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LLM-BasedSingleAgentSystem:ANewEraofIntelligentAutomation关键词:大语言模型,单智能体系统,强化学习,自然语言处理,智能自动化1.背景介绍近年来,随着深度学习技术的快速发展,大语言模型(LLM)在自然语言处理(NLP)领域取得了突破性进展。LLM凭借其强大的语言理解和生成能力,正在改变着人们与信息交互的方式。同时,人工智能领域的另一个重要研究
- DeepSeek:硅谷AI格局的拐点?
新加坡内哥谈技术
人工智能深度学习语言模型学习
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/本周,硅谷迎来了一个令人大跌眼镜的现实:打造先进人工智能模型,可能远没有想象中那么高深莫
- YOLO 目标检测编程详解
不知名靓仔
YOLO目标检测人工智能
引言目标检测是计算机视觉中的一个重要任务,它旨在识别图像中的对象并定位这些对象的位置。YOLO(YouOnlyLookOnce)是一种流行的目标检测算法,因其速度快且准确度高而广受好评。本文将深入探讨YOLO的原理及其实现方法,并提供一个使用Python和PyTorch的示例代码。项目源码见最下方1.YOLO算法简介YOLO算法的核心思想是将目标检测视为回归问题,而不是传统的分类加定位的两阶段方法
- AI常见的算法
纠结哥_Shrek
人工智能算法
人工智能(AI)中常见的算法分为多个领域,如机器学习、深度学习、强化学习、自然语言处理和计算机视觉等。以下是一些常见的算法及其用途:1.机器学习(MachineLearning)监督学习(SupervisedLearning)线性回归(LinearRegression):用于预测连续值,如房价预测。逻辑回归(LogisticRegression):用于分类问题,如垃圾邮件检测。支持向量机(SVM)
- 微软集成与Azure愿景蓝图套件:一站式视觉化你的IT架构
秦言舸Gale
微软集成与Azure愿景蓝图套件:一站式视觉化你的IT架构Microsoft-Integration-and-Azure-Stencils-Pack-for-VisioMicrosoftIntegration,Azure,PowerPlatform,Office365andmuchmoreStencilsPackit’saVisiopackagethatcontainsfullyresizable
- 【Python进阶】5招轻松掌握Python计算机视觉,你还用传统方法吗?
墨瑾轩
Python入门~精通python计算机视觉开发语言
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣5招轻松掌握Python计算机视觉,你还用传统方法吗?开场白嘿,小伙伴们!今天我们要聊一个非常酷炫的话题——如何使用Python进行计算机视觉。想象一下,当你手头上有一组图像数据,需要对其进行识别、检测或分割,你会怎么做?手动编程?Nonono,那太累了!今天
- 两个免费的英文论文润色网站
知足常乐2023
论文润色笔记
1.DeepL:常用,感觉比较好用,可选择多种润色模式,但润色的字数有限制。DeepLWrite:人工智能驱动的写作助手https://www.deepl.com/write2.赛特新思:用的较少,润色字数也有限制。SCI润色|文献润色|英文润色|Editing|英文写作|论文写作|citexs斯特新思https://www.citexs.com/Editing
- Microsoft Dynamics 365软件二次开发:Dynamics365部署与版本控制策略
kkchenjj
工业软件二次开发全集microsoft架构工业软件ERP开发语言
MicrosoftDynamics365软件二次开发:Dynamics365部署与版本控制策略Dynamics365二次开发概述Dynamics365平台介绍MicrosoftDynamics365是一个由Microsoft开发的集成业务应用程序套件,旨在帮助组织优化其销售、客户服务、现场服务、财务、供应链、营销和运营流程。它结合了CRM(客户关系管理)和ERP(企业资源规划)功能,提供了一个统一
- python中cv是什么_python里面cv是什么意思
weixin_39639568
python中cv是什么
OpenCV(OpenSourceComputerVisionLibrary)开放源代码计算机视觉库,主要算法涉及图像处理、计算机视觉和机器学习相关方法。OpenCV其实就是一堆C和C++语言的源代码文件,这些源代码文件中实现了许多常用的计算机视觉算法。OpenCV由一系列C函数和C++类构成,它有C,C++,Python和java接口,当前SDK(SoftwareDevelopmentKit软件
- cv2 要下载哪个包
ivanfor666
pythonpython
cv2是OpenCV库的一个常见别名,用于计算机视觉任务。要安装OpenCV,你可以使用以下命令:bashCopycodepipinstallopencv-python这将从PyPI上下载并安装OpenCV的Python包。请确保你已经安装了pip工具,并且在执行该命令时,你正在使用与你的项目相对应的Python版本。如果你需要安装OpenCV的额外模块,你可以通过类似的方式安装它们。例如,如果你
- 实时美颜与滤镜技术的融合:美颜SDK开发详解
美狐美颜sdk
美颜SDK直播美颜SDK第三方美颜SDK人工智能计算机视觉视频美颜SDK深度学习美颜SDK直播美颜sdk
如今,实时美颜与滤镜技术逐渐成为影像处理领域的热点。为了满足用户对个性化和高质量视觉效果的需求,各类美颜SDK(SoftwareDevelopmentKit,软件开发工具包)应运而生。本篇文章,笔者将详细解析实时美颜与滤镜技术的原理、关键技术以及美颜SDK的开发要点。一、实时美颜与滤镜技术概述实时美颜主要通过图像处理和计算机视觉技术,在不影响拍摄流畅度的前提下,对人脸进行美化处理。滤镜技术则侧重于
- Python编程入门指南:从基础到高级
编程咕咕gu-
python零基础学习开发语言学习零基础入门
如果你正在学习Python,那么你需要的话可以,点击这里Python重磅福利:入门&进阶全套学习资料、电子书、软件包、项目源码等等免费分享!一、引言1.1Python编程语言简介Python是一种高级编程语言,它具有简单易学、代码简洁、易维护等特点,因此被广泛应用于科学计算、数据分析、人工智能等领域。Python的语法简洁,代码易于阅读和编写,因此它被广大开发者所喜爱。同时,Python还拥有庞大
- 机器学习Day01
酒脑猫
机器学习人工智能
人工智能三大概念及其关系人工智能(AI):使用计算机来模拟或者代替人类机器学习(ML):机器自动学习,并不只由人定义规则编程深度学习(DL):大脑仿生,模拟人大脑神经网络,设计一层层神经元模拟事物机器学习是实现人工智能的一种途径,深度学习是机器学习的一种更加深入的方法。机器学习学习方法基于规则的学习:程序员根据自己经验定义规则基于模型的学习:由于某些事物,问题无法可以定义明确的规则,如:图片,语音
- 2024年AIGC技术未来发展趋势与挑战:从应用创新到伦理监管
小宝哥Code
ChatGPT与AIGCAIGC
生成式人工智能(AIGC,ArtificialIntelligenceGeneratedContent)作为人工智能领域的一个重要分支,正在快速发展并改变着多个行业的格局。2024年,AIGC技术持续取得突破,并进入更多实际应用场景。本文将详细介绍AIGC的基本概念、原理、最新前沿技术及发展趋势。1.生成式人工智能(AIGC)基本概念与原理生成式人工智能(AIGC)是指通过人工智能技术,尤其是深度
- 判断ip地址的合法性python_Python判断IP地址合法性的方法
胖厨胡学斌
Python判断IP地址合法性的方法发布于2014-10-1015:16:49|753次阅读|评论:0|来源:网友投递Python编程语言Python是一种面向对象、解释型计算机程序设计语言,由GuidovanRossum于1989年底发明,第一个公开发行版发行于1991年。Python语法简洁而清晰,具有丰富和强大的类库。它常被昵称为胶水语言,它能够把用其他语言制作的各种模块(尤其是C/C++)
- AI 集群:Exo 项目详解
ivwdcwso
运维人工智能AIExo
引言随着人工智能技术的迅猛发展,越来越多的人希望在家中运行自己的AI集群。传统的AI集群通常需要昂贵的硬件和复杂的配置,但Exo项目正是为了解决这个问题而诞生的。Exo项目旨在让你利用日常电子设备,轻松搭建一个高效的AI集群。本文将详细介绍Exo项目的特点、安装步骤和实战示例。©ivwdcwso(ID:u012172506)Exo项目特点1.广泛的模型支持Exo支持多种流行的AI模型,包括但不限于
- python 监控键盘输入_python 监控键盘输入
weixin_39717121
python监控键盘输入
软件测试精品文章汇总测试基础python测试开发库及项目谷歌如何测试软件python工具书籍下载-持续更新2018软件测试标准汇总下载python测试开发自学每周一练python测试工具开发自学每周一练-2018-06软件测试工具书籍与面试题汇总下载(持续更新)python测试开发自动化测试数据分析...文章python人工智能命理2019-05-131907浏览量Shell历史记录异地留痕审计与
- 【计算机视觉】目标跟踪应用
油泼辣子多加
计算机视觉计算机视觉目标跟踪人工智能
一、简介目标跟踪是指根据目标物体在视频当前帧图像中的位置,估计其在下一帧图像中的位置。视频帧由t到t+1的检测,虽然也可以使用目标检测获取,但实际应用中往往是不可行的,原因如下:目标跟踪的目的是根据目标在当前视频帧图像中的位置,预测其在下一帧图像中的位置。然而,使用目标检测直接获取目标位置的方式在实际应用中存在一些限制,主要原因如下:1.实时性问题频繁检测开销大:目标检测通常需要对每一帧的整个图像
- 进阶之路:从传统编程到AI大模型与Prompt驱动的爬虫技术
大模型老炮
人工智能prompt爬虫语言模型大模型学习AI大模型
前言爬虫相信很多人都对此有所了解,它主要依靠编写代码实现对网页结构的解析,通过模拟浏览器行为获取目标数据!随着人工智能技术的发展,LLM大模型的出现为爬虫技术带来了新的思路。与传统的编程模式不同,使用AI大模型+prompt可以显著提高程序员的编程效率。通过结合人工智能和自然语言处理技术,开发者可以更加高效地编写爬虫代码,并实现对网页内容的智能解析和提取。前置内容下面我将通过爬取豆瓣电影top25
- 开源模型应用落地-qwen模型小试-Qwen2.5-7B-Instruct-LangGraph-链式处理(一)
开源技术探险家
开源模型-实际应用落地#深度学习自然语言处理语言模型langchain
一、前言在当今人工智能快速发展的时代,大语言模型不断迭代升级,为各种复杂任务的处理提供了强大的支持。LangGraph作为一种创新的架构,其链式处理机制为充分发挥LLMs的潜力提供了新的途径。Qwen2.5模型是一款备受瞩目的大语言模型,它具备出色的语言理解和生成能力,在广泛的自然语言处理任务中都展现出了卓越的性能。其在语言的准确性、逻辑性以及对复杂语义的把握上都有着突出的表现,为基于它进行的各类
- FFmpeg Metadata
xiaojun11-
FFmpeg/FFplayffmpeg的metadata
FFmpegMetadataThispagedocumentsallofthemetadatakeysthatFFmpeghonors,dependingontheformatbeingencoded.Contents[hide]1BasicUsage2QuickTime/MOV/MP4/M4A/etal.3ASF/WMV/WMA4AVI5FLV6Matroska7MP38MPEGTranspor
- 一文搞懂python的face_recognition人脸识别库
码上飞扬
python开发语言人脸识别
随着人工智能和机器学习的快速发展,人脸识别技术在安全监控、身份验证、智能相册等领域的应用越来越广泛。Python作为一门简洁高效的编程语言,其丰富的库支持使得人脸识别的实现变得更加容易。本文将介绍如何使用Python的face_recognition库来实现基本的人脸识别功能。一、face_recognition库简介1.1什么是face_recognition库?face_recognition
- AIGC常见基础概念
GISer_Jinger
人工智能AIGC机器学习ai
AIGC(AIGeneratedContent,人工智能生成内容)是近年来快速发展的领域,涉及文本生成、图像生成、音频生成、视频生成等。以下是AIGC常见的面试题目及其详解:1.AIGC基础概念什么是AIGC?它的主要应用场景有哪些?定义:AIGC是指利用人工智能技术自动生成内容,包括文本、图像、音频、视频等。应用场景:文本生成:新闻写作、广告文案、代码生成(如GitHubCopilot)。图像生
- AI时代的人类增强:道德考虑与身体增强的未来发展策略分析预测
AI大模型应用之禅
AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
人类增强、AI、道德、身体增强、未来发展策略、预测1.背景介绍人类文明自诞生以来,就一直在探索如何超越自身的局限性。从使用工具到发明火,从农业文明到工业革命,每一次进步都代表着人类对自身能力的提升。如今,人工智能(AI)的快速发展,为人类提供了前所未有的机会,让我们迈向一个全新的时代——AI时代的人类增强时代。AI时代的人类增强,是指通过人工智能技术,提升人类的认知能力、身体能力和生活质量。这不仅
- Janus Pro:DeepSeek 开源革新,多模态 AI 的未来
后端
JanusPro是DeepSeek开发的一个开源多模态人工智能框架,它通过集成视觉和语言处理能力,提供了高性能的多模态任务处理能力。在线体验:https://deepseek-januspro.com/背景JanusPro于2025年1月发布,是一个开源的多模态AI框架,能够同时处理视觉和语言信息。它采用了独特的多模态架构,包括解耦的视觉编码框架和统一的Transformer架构,以及SigLIP
- 《深度剖析Q-learning中的Q值:解锁智能决策的密码》
人工智能深度学习
在人工智能的飞速发展进程中,强化学习作为一个关键领域,为智能体与环境交互并学习最优行为策略提供了有效框架。其中,Q-learning算法凭借其独特的魅力,在机器人控制、自动驾驶、游戏AI等众多领域大放异彩。而Q-learning中的Q值,更是理解这一算法的核心关键,它如同智能体的“智慧密码”,指导着智能体在复杂环境中做出最优决策。Q值的直观定义:行为价值的“预言家”从直观层面理解,Q值代表着智能体
- 读取机器人移动轨迹并在RVIZ界面中显示(ROS1)
如阳光如你
机器人linux学习
文章目录前言一、准备1.坐标系2.ros下的路径消息格式二、实现过程1.轨迹保存2.轨迹读取并显示前言机器人在巡检过程中需要沿着固定路线执行任务,因此可以先把机器人的移动轨迹录制并保存下来,之后读取轨迹,方便后续操作。一、准备1.坐标系巡检导航过程中,机器人需要确定好坐标系,以便进行定位与导航,在gazebo仿真下可以选择world坐标系,在实际使用中通常使用的是map坐标系,这里以map坐标系为
- ROS中可视化车辆运动路径-采用RVIZ进行显示
m0_46699649
人工智能算法c++自动驾驶
一:序言在进行机器人自动驾驶过程中数据分析必不可少,为了更方便我们进行处理和观看这个功能效果,进行可视化是必不可少的,车辆行驶路径往往是以路径点的信息进行保存,为了更直观看到显示的效果,可以将其在RVIZ上可视化出来。如果觉得学习了C++和ROS不知道怎么入手自动驾驶项目的可以参考这个项目,或者C++和ROS不是很熟练的我也推荐结合相关课程一块学习无人车采用纯跟踪算法跟随离线路径(ROS,C++实
- 江大白 | 斯坦福大学教授李飞飞团队:关于 2024年人工智能发展报告总结!
双木的木
深度学习拓展阅读人工智能
本文来源公众号“江大白”,仅用于学术分享,侵权删,干货满满。原文链接:斯坦福大学教授李飞飞团队:关于2024年人工智能发展报告总结!导读斯坦福大学教授李飞飞团队总结、解析了2024年人工智能发展报告,涵盖AI研究进展、技术性能提升、经济影响及医疗教育突破,重点分析大型模型成本、多模态模型崛起、AI可靠性挑战和生成式AI影响,是了解AI现状与未来的必读内容!斯坦福大学教授李飞飞团队关于2024年人工
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分