- 18、架构-可观测性之聚合度量
大树~~
架构javapython后端架构
聚合度量聚合度量是指对系统运行时产生的各种指标数据进行收集、聚合和分析,以了解系统的健康状况和性能表现。聚合度量是可观测性的关键组成部分,通过对度量数据的分析,可以及时发现系统中的异常和瓶颈。以下是对聚合度量各个方面的详细解析,并结合具体的数据案例和技术支撑。指标收集收集系统运行时产生的各种指标数据是聚合度量的基础。常见的指标包括CPU使用率、内存使用率、请求处理时间、请求数、错误率等。以下是指标
- 3.1 损失函数和优化:损失函数
做只小考拉
用一个函数把W当做输入,然后看一下得分,定量地估计W的好坏,这个函数被称为“损失函数”。损失函数用于度量W的好坏。有了损失函数的概念后,就可以定量的衡量W到底是好还是坏,要找到一种有效的方法来从W的可行域里,找到W取何值时情况最不坏,,这个过程将会是一个优化过程。损失函数L_i定义:通过函数f给出预测的分数和真实的目标(或者说是标签y),可以定量的描述训练样本预测的好不好,最终的损失函数是在整个数
- 图像匹配---(Python)
阳光下的Smiles
Python图像处理
图像匹配---(Python)图像匹配分为以灰度为基础的匹配和以特征为基础的匹配:(1)灰度匹配是基于像素的匹配。灰度匹配通过利用某种相似性度量,如相关函数、协方差函数、差平方和、差绝对值和等测度极值,判定两幅图像中的对应关系。(2)特征匹配则是基于区域的匹配。基于特征的匹配所处理的图像一般包含的特征有颜色特征、纹理特征、形状特征、空间位置特征等1、差分矩阵求和差分矩阵=图像A矩阵数据-图像B矩阵
- Python和R均方根误差平均绝对误差算法模型
亚图跨际
Python交叉知识R回归模型误差指标归一化均方根误差生态状态指标神经网络成本误差气体排放气候模型多项式拟合
要点回归模型误差评估指标归一化均方根误差生态状态指标神经网络成本误差计算气体排放气候算法模型Python误差指标均方根误差和平均绝对误差均方根偏差或均方根误差是两个密切相关且经常使用的度量值之一,用于衡量真实值或预测值与观测值或估计值之间的差异。估计器θ^\hat{\theta}θ^相对于估计参数θ\thetaθ的RMSD定义为均方误差的平方根:RMSD(θ^)=MSE(θ^)=E((θ^−θ
- 在生产环境中部署Elasticsearch:最佳实践和故障排除技巧——聚合与搜索(三)
不会编程的小孩子
elasticsearch大数据搜索引擎
#在生产环境中部署Elasticsearch:最佳实践和故障排除技巧——聚合与搜索(三)前言文章目录前言-聚合和分析-执行聚合操作-1.使用JavaAPI执行聚合操作-2.使用CURL命令执行聚合操作-1.使用JavaAPI执行度量操作-2.使用CURL命令执行度量操作-使用缓存-调整分片大小和数量-使用搜索建议-结论-节点发现-负载均衡-故障转移-结论-访问控制-加密-身份验证-结论-RESTA
- 从零到一建设数据中台 - 架构概览
我码玄黄
从零到一建设数据中台架构数据中台中台架构
数据中台功能架构概览数据中台相关名词解释1.数据仓库:数据仓库是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于支持管理决策。因此,其重点在于数据的集合。数据仓库可使用维度建模方法论从业务过程中抽象出通用维度与度量,组成数据模型,为决策分析提供通用的数据分析能力。数据仓库重在建数据,而数据中台则将建、治、管、服放到同样的高度,数据仓库只是数据中台的一个子集。用一个蔬菜储存的例子来简
- 数模原理精解【8】
叶绿先锋
基础数学与应用数学人工智能统计分析概率论数学建模
文章目录协方差概述协方差的定义协方差的计算协方差的例子协方差矩阵协方差矩阵定义协方差矩阵的性质协方差矩阵的计算协方差矩阵的例子协方差矩阵的例题多元正态分布基础多元正态分布密度函数多元正态分布密度函数Julia实现详细解释定义计算例子例题参考文献协方差概述协方差是一种统计度量,用于描述两个变量之间的线性相关程度以及它们变化的趋势是否一致。具体来说,协方差计算的是两个变量同时偏离其均值的程度。如果两个
- 软考笔记--软件系统质量属性
赤露水
软考笔记
一.软件系统质量属性的概念软件系统的质量就是“软件系统与明确地和隐含的定义的需求相一致的程度”。更具体地说,软件系统质量就是软件与明确地叙述的功能和性能需求文档中明确描述的开发标准以及任何专业开发的软件产品都应该具有的隐含特征相一致的程度。从管理的角度对软件系统质量数据进行度量,可以将影响软件质量的主要因素划分为6种纬度特性:功能性。可靠性,易用性,效率,维护性与可移植性。其中,功能包括适合性,准
- 你是自然界的精灵,不属于这人间烟火
宝藏男孩儿
不管梦还在不在,我一直都在我最怕,不知道自己是为什么活我更怕,一个人是为了另一个人活我的年纪只是时间的度量器记住的日子,那才是我的人生在度量个几年我恐怕就难嫁了,噗,我被你的“语不惊人死不休”逗笑了酝酿好的情绪被你任性的添加着佐料不管酸甜苦辣,高兴放哪个就放哪个我却拿你没有一点儿脾气忽然觉得你是我的女儿,便露出了慈父般的微笑“你又在憋什么坏水呢?”“叫爸爸”,这是我没有组织过的语言,竟不由自主的脱
- 大型网站核心架构要素
贾欣晓
架构架构
文章目录1性能1.1性能优化1.2性能度量2可用性2.1可用性指标2.2可用性目标2.3可用性方案2.4可用性度量3伸缩性3.1伸缩性度量3.2伸缩性方案3.2.1应用服务器集群3.2.2缓存服务器集群3.2.3关系数据库集群3.2.4NoSQL数据库产品4扩展性4.1扩展性度量4.2扩展性方案4.2.1事件驱动架构4.2.2分布式服务5安全性5.1安全性度量6小结关于什么是架构,一种比较通俗的说
- 《公顷、平方千米》的教学反思
春天的承诺
面积单位在生产、生活中有着广泛的应用,在此之前,学生已经学习和掌握了平方厘米、平方分米、平方米这些常用的较小的面积单位.在生产、生活中往往需要度量较大图形的面积,如农田的面积、城市的占地面积等,原有较小的面积单位不适应较大的图形面积的度量。为此,需要有新的、较大的面积单位,这正是本节学习的内容。这节课上让学生感知的比较多,“公顷”和“平方千米”这两个土地面积单位比较大,对五年级的学生来说,形成表象
- 小规模的流处理框架.Part 1: thread pools
loredp
javathreadpool流处理
原文链接作者:TomaszNurkiewicz译者:simonwang(译者:强力推荐这篇文章,作者设计了一个用于小流量的流式数据处理框架,并详细给出了每一个需要注意的设计细节,对比了不同设计方案的优缺点,能够让你对流处理过程,某些设计模式和设计原则以及指标度量工具有一个更深刻的认识!)在GeeCON2016上我为我的公司准备了一个编程竞赛,这次的任务是设计并实现一个能够满足以下要求的系统:系统能
- 软考笔记--系统架构评估
赤露水
软考笔记
系统架构评估是在对架构分析、评估的基础上,对架构策略的选取进行决策。它利用数据或逻辑分析技术,针对系统的一致性,正确性,质量属性,规划结果等不同方面,提供描述性,预测性和指令性的分析结果。系统结构评估的方法通常可以分为3类:基于调查问卷或检查表的方式,基于场景的方式和基于度量的方式。(1)基于调查问卷或检查表的方法。该方法的关键是要设计好问卷或检查表,充分利用系统相关人员的经验和知识,获得对架构的
- 软考架构师论文:论软件架构评估
种树人20240819
笔记
摘要:xxxx年x月,我参加了xxx项目,并担任系统架构设计师,负责项目的需求分析、架构设计、架构评估等工作。该项目是xxx的项目,合同金额xxx万,建设工期x个月。该项目的目标是xxx。架构评估是软件开发过程中的重要环节。架构评估有基于调查问卷或检查表的评估方法、基于场景的评估方法、基于度量的评估方法,其中基于场景的评估方法又包括SAAM(软件架构分析方法)、ATAM(架构权衡分析方法)。ATA
- 基于Prometheus和Grafana的现代服务器监控体系构建
不会代码的小林
服务器
在当今的IT基础设施中,监控是确保系统性能和稳定性的关键组成部分。Prometheus和Grafana是两个广受欢迎的开源工具,它们可以共同构建一个功能全面、可视化强的监控系统。Prometheus是一个开源的监控系统和时间序列数据库,适用于记录实时的度量指标。它不仅提供了多维数据模型和强大的PromQL查询语言,还支持服务发现和HTTP拉取模型。这些特性使得Prometheus特别适合在微服务和
- 数学建模-基于熵权法对Topsis模型的修正
啥都想学点的研究生
矩阵线性代数
topsis模型赋予权重有层次分析法,但层次分析法也有其弊端。层次分析法最大的缺点:判断矩阵的确定依赖于专家,如果专家的判断存在主观性的话,会对结果产生很大的影响。(主观性太强)针对层次分析法主观性太强的弊端,我们可以采用熵权法给topsis评价模型的各个指标赋权。如何度量信息量的大小,以小明和小王的例子为例:建立信息量I(x)和P(x)之间的关系:信息熵的定义:信息熵越大,信息量是越大还是越小呢
- OSPF动态路由协议
抽象文学带师
网络oracletcp/ip
OSPF动态路由协议一.OSPF:开放式最短路径优先协议无类别链路状态型IGP协议组播更新:224.0.0.5/6支持等开销负载均衡生成的路由条目优先级10,使用cost值作为度量;链路状态型协议最大的问题,在于邻居间传递拓扑信息,更新量巨大,故非常消耗设备的带宽和计算资源,不能在中大型网络生存;因此OSPF协议需要结构化的部署--区域划分、合理ip地址规划支持触发更新;每30min进行一次周期更
- 批判和展望:Python文本分析在“企业数字化转型”的“滥用”越走越远,远离初心
Python_魔力猿
python云计算开发语言
开文第一问:企业数字化转型真的可以用Python文本分析度量吗?在回答目前大行其道的Python文本分析法能否测算企业数字化转型的问题之前,我们有必要简单地熟悉一下企业数字化转型的基本定义。企业数字化转型是什么?数字化转型是数字技术与产业发展的深度融合,将数字技术的运用贯穿于企业经营管理的方方面面,企业数字化转型的本质是通过整合使用数字技术对企业经营活动进行重要变革的过程。其次,企业数字化转型的程
- 代码检查工具Sonar
我是谁??
ToolsSonar
sonar介绍Sonar是一个用于代码质量管理的开放平台。通过插件机制,Sonar可以集成不同的测试工具,代码分析工具,以及持续集成工具。与持续集成工具(例如Hudson/Jenkins等)不同,Sonar并不是简单地把不同的代码检查工具结果(例如FindBugs,PMD等)直接显示在Web页面上,而是通过不同的插件对这些结果进行再加工处理,通过量化的方式度量代码质量的变化,从而可以方便地对不同规
- 【车辆轨迹处理】python实现轨迹点的聚类(一)——DBSCAN算法
空之箱大战春日影
车辆轨迹数据处理算法python聚类
文章目录前言一、单辆车轨迹的聚类与分析1.引入库2.聚类3.聚类评价二、整个数据集多辆车聚类1.聚类2.整体评价前言 空间聚类是基于一定的相似性度量对空间大数据集进行分组的过程。空间聚类分析是一种无监督形式的机器学习。通过空间聚类可以从空间数据集中发现隐含的信息。 作者在科研工作中,需要对某些车辆的轨迹数据进行一些空间聚类分析,以期望发现车辆在行驶过程中发生轨迹点”聚集“的行为。当等时间间隔的
- 偷盗的编剧成就了年轻人,要有多大的度量,才能原谅你偷走了我的人生?
馨肝宝贝
她从小父母离异,跟母亲生活。母亲再婚后生了个男孩,外公外婆古稀之年喜得外孙,自是十分宠爱。她考大学的那年夏天,某个傍晚,她抱着弟弟坐在阳台上乘凉,一手拿着英语书背单词,一手抓着弟弟不让他离开自己的膝盖,还不停叮嘱他:“老实坐着,再等一下妈妈就拿刨冰回来了。”三岁的小男孩好奇又好动,哪里听她的?趁她不注意,用力一挣,想往外冲却没掌握好力道,头撞在地上,哭了一声,然后就没动静了。她吓得赶紧扑过去喊弟弟
- 基于Prometheus和Grafana的现代服务器监控体系构建
小绵羊不怕大灰狼
prometheusgrafana
1.安装PrometheusPrometheus是一个开源的监控系统和时间序列数据库,适用于记录实时的度量指标。•下载并安装Prometheus:•前往Prometheus官方网站下载适用于您操作系统的版本。•解压并配置prometheus.yml文件,定义抓取目标(targets),如服务器、应用程序等。•配置Prometheus:•编辑prometheus.yml文件,添加您要监控的服务器地址
- 【机器学习】K近邻
可口的冰可乐
机器学习机器学习人工智能
2.K近邻K近邻算法(KNN)的基本思想是通过计算待分类样本与训练集中所有样本之间的距离,选取距离最近的K个样本,根据这些样本的标签进行分类或回归。KNN属于非参数学习算法,因为它不假设数据的分布形式,主要依赖距离度量来进行决策。优点简单易懂:KNN算法非常直观,容易理解和实现。无假设:KNN算法对数据没有假设,适用于复杂分布的数据集。适用于多类分类问题:KNN能够处理多类分类问题,只需在投票过程
- Spark入门:KMeans聚类算法
17111_Chaochao1984a
算法sparkkmeans
聚类(Clustering)是机器学习中一类重要的方法。其主要思想使用样本的不同特征属性,根据某一给定的相似度度量方式(如欧式距离)找到相似的样本,并根据距离将样本划分成不同的组。聚类属于典型的无监督学习(UnsupervisedLearning)方法。与监督学习(如分类器)相比1,无监督学习的训练集没有人为标注的结果。在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。
- 软考-系统架构设计师(ESB-企业服务总线)
李小斌96
软考软考架构师企业服务总线ESB软考ESB
来源ESB的概念是从SOA发展而来,它是一种为进行连接服务提供的标准化的通信基础结构,基于开放的标准,为应用提供了一个可靠的、可度量的和高度安全的环境,并可帮助企业对业务流程进行设计和模拟,对每个业务流程实施控制和跟踪、分析并改进流程和性能。在一个复杂的企业计算环境中,如果服务提供者和服务请求者之间采用直接的端到端的交互,那么随着企业信息系统的增加和复杂度的提高,系统之间的关联会逐渐变得非常复杂,
- 做人,别拿自己的尺寸渡人
逍遥的坏蛋
拿自己的“心尺”去度量别人,人人都不够尺寸;拿自己的“心秤”去称量别人,人人都不够份量;拿自己的“心态”去衡量别人,人人都不顺其眼;拿自己的“心胸”去容纳别人,人人都有着过失。所以做人,别拿自己的尺寸渡人!
- zabbix和prometheus介绍;云原生
张小胡
zabbixprometheus
监控Prometheus和Zabbix作为两种流行的监控系统,它们在多个方面存在显著的差异。以下是对两者区别的详细分析:一、数据模型与采集方式Prometheus:数据模型:基于度量指标的模型,支持多维度数据模型,每个时间序列数据都包含多个标签(label),用于描述数据的不同属性。这种模型使得用户可以灵活地对数据进行筛选、聚合和组合。采集方式:采用Pull模式,通过HTTP协议从被监控端主动拉取
- 数据结构与算法关系(中):如何评判一个算法的好坏
MobotStone
大家好,我是MicroStone,一个曾在三家世界500强企业担任要职的一线互联网工程师。上一节,我们了解到算法的一些特征,想必大家都掌握了算法设计要求,在学习或工作中根据业务需求设计要设计一个算法,我们要如何评估一个算法的好坏呐?下面我们来看看算法的度量方式。1、算法的效率度量方法我们知道一个算法的效率,抛开性能这些,其实值得注意的就是算法的执行时间,同一台机器上,我们使用相同数据集,利用计算机
- 模型评估:可决系数与纳什效率系数
~hello world~
学习笔记机器学习python人工智能
1、可决系数R2 可决系数(Coefficientofdetermination,R)是用来度量一个统计模型的拟合优度的。其数学表达式如下:式中:yi是变量观测值;y‾\overline{y}y是变量观测值的均值; y^i\hat{y}_iy^i是统计模型的变量模拟值; R2的取值范围为[0,1]。2、纳什效率系数NSE 纳什效率系数(Nash-SutcliffeEfficiency,NS
- 对机器学习中Fbeta指标的简介
背包客研究
机器学习人工智能
对机器学习的Fbeta指标的概括介绍Fbeta指标是一种可配置的单得分度量,用于基于对正类的预测来评价二元分类模型。用精确度和回收率计算出Fbeta测量值。精密是用来计算正类正确预测的百分比的度量。回忆从所有可以作出的正预测中计算出正类的正确预测的百分比。精确度最大化将最小化错误,而最大化回忆将最小化错误。…F尺寸按精确度和回收率的调和平均值计算,给予相同的权重。它允许使用单评分来评估模型,同时考
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =