Training address: http://acm.hust.edu.cn/vjudge/contest/view.action?cid=38994#overview
B.Xenia and Bit Operations ----Codeforces 339D
线段树大水题。。每个节点维护一个flag,flag=1表示此时应与其兄弟节点做或(|)操作,flag=2表示做异或(^)操作,然后pushup...
代码:
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; #define N 140010 struct node { int sum,flag; }tree[4*N]; int two_n(int mi) { int i; int res = 1; for(i=1;i<=mi;i++) { res *= 2; } return res; } int a[N]; void pushup(int rt) { if(tree[2*rt].flag == 1) { tree[rt].sum = tree[2*rt].sum | tree[2*rt+1].sum; tree[rt].flag = 2; } else { tree[rt].sum = tree[2*rt].sum ^ tree[2*rt+1].sum; tree[rt].flag = 1; } } void build(int l,int r,int rt) { if(l == r) { tree[rt].sum = a[l]; tree[rt].flag = 1; return; } int mid = (l+r)/2; build(l,mid,2*rt); build(mid+1,r,2*rt+1); pushup(rt); } void update(int l,int r,int pos,int val,int rt) { if(l == r) { tree[rt].sum = val; tree[rt].flag = 1; return; } int mid = (l+r)/2; if(pos<=mid) update(l,mid,pos,val,2*rt); else update(mid+1,r,pos,val,2*rt+1); pushup(rt); } int main() { int n,m; int i,pos,val; while(scanf("%d%d",&n,&m)!=EOF) { int ken = two_n(n); for(i=1;i<=ken;i++) { scanf("%d",&a[i]); } build(1,ken,1); for(i=0;i<m;i++) { scanf("%d%d",&pos,&val); update(1,ken,pos,val,1); printf("%d\n",tree[1].sum); } } return 0; }
D.Copying Data ----Codeforces 292E
这题初看像线段树题,结果就是线段树题。怎么做树,维护哪些值呢? 开始想歪了,参照了别人的报告,于是知道,可以维护stx,sty值,这些值只在叶子节点上表现出来,因为只查叶子节点,不查区间,stx记录这个节点有没有被copy成a数组中的元素,stx == 0则代表还没被a给拷贝过来,否则,stx记录的是从x点开始拷贝k个的那个x值,等会后面要用到。sty则是随stx,stx要更新时,sty也要更新,sty初始为0,这时的sty为拷贝从b的y个位置开始的那个y值,总之,即输入x,y,k,stx记录x,sty记录y。最后查询pos节点,如果其stx或sty为0,说明这个节点还没有受到“侵染“,保持原来的b数组中的值,所以输出b[pos]。否则,已经收到”侵染“,输出a[pos-sty+stx],即从a中去与距离相等的元素,距离就是那个pos-sty,这时知道sty的作用了吧。。
代码:
/*3900KB 280ms*/ #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; #define N 100010 int a[N],b[N]; int n,m; struct node { int stx,sty; }tree[4*N]; void build(int l,int r,int rt) { tree[rt].stx = tree[rt].sty = 0; if(l == r) { return; } int mid = (l+r)/2; build(l,mid,2*rt); build(mid+1,r,2*rt+1); } void pushdown(int rt) { if(tree[rt].stx) { tree[2*rt].stx = tree[2*rt+1].stx = tree[rt].stx; tree[2*rt].sty = tree[2*rt+1].sty = tree[rt].sty; tree[rt].stx = tree[rt].sty = 0; } } void change(int l,int r,int aa,int bb,int stx,int sty,int rt) { if(aa<=l&&bb>=r) { tree[rt].stx = stx; tree[rt].sty = sty; return; } pushdown(rt); int mid = (l+r)/2; if(bb<=mid) change(l,mid,aa,bb,stx,sty,2*rt); else if(aa>mid) change(mid+1,r,aa,bb,stx,sty,2*rt+1); else { change(l,mid,aa,bb,stx,sty,2*rt); change(mid+1,r,aa,bb,stx,sty,2*rt+1); } } node query(int l,int r,int pos,int rt) { if(l == r) { return tree[rt]; } pushdown(rt); int mid = (l+r)/2; if(pos<=mid) return query(l,mid,pos,2*rt); return query(mid+1,r,pos,2*rt+1); } int main() { int i; int x,y,k,pos; int op; while(scanf("%d%d",&n,&m)!=EOF) { for(i=1;i<=n;i++) { scanf("%d",&a[i]); } for(i=1;i<=n;i++) { scanf("%d",&b[i]); } build(1,n,1); for(i=0;i<m;i++) { scanf("%d",&op); if(op == 1) { scanf("%d%d%d",&x,&y,&k); change(1,n,y,y+k-1,x,y,1); } else { scanf("%d",&pos); node ans = query(1,n,pos,1); if(ans.stx == 0) { printf("%d\n",b[pos]); } else { printf("%d\n",a[pos-ans.sty+ans.stx]); } } } } return 0; }
E.Circular RMQ ---Codeforces 52C
也是很简单的一道线段树,纯当练手了,还是那样维护,只不过可能换成两个区间查询和加值罢了。。还有值得一提的输入方式,因为比较坑爹的是输入不定,所以借鉴了别人的stringstream 方法,核心代码如下:
gets(buffer);
stringstream ss(buffer);
ss>>aa>>bb;
具体实现在下面。。
代码:
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <string> #include <utility> #include <cstdlib> #include <sstream> using namespace std; #define N 200010 struct node { lll mini; lll addmark; }tree[4*N]; int n,m; lll a[N]; void pushup(int rt) { tree[rt].mini = min(tree[2*rt].mini,tree[2*rt+1].mini); } void build(int l,int r,int rt) { tree[rt].addmark = 0; if(l == r) { tree[rt].mini = a[l]; return; } int mid = (l+r)/2; build(l,mid,2*rt); build(mid+1,r,2*rt+1); pushup(rt); } void pushdown(int rt) { if(tree[rt].addmark) { tree[2*rt].mini += tree[rt].addmark; tree[2*rt+1].mini += tree[rt].addmark; tree[2*rt].addmark += tree[rt].addmark; tree[2*rt+1].addmark += tree[rt].addmark; tree[rt].addmark = 0; } } void add(int l,int r,int aa,int bb,int val,int rt) { if(aa>r||bb<l) return; if(aa<=l&&bb>=r) { tree[rt].mini += val; tree[rt].addmark += val; return; } pushdown(rt); int mid = (l+r)/2; if(aa<=mid) add(l,mid,aa,bb,val,2*rt); if(bb>mid) add(mid+1,r,aa,bb,val,2*rt+1); pushup(rt); } lll query(int l,int r,int aa,int bb,int rt) { if(aa>r||bb<l) return (lll)1e17; if(aa<=l&&bb>=r) { return tree[rt].mini; } pushdown(rt); int mid = (l+r)/2; if(bb<=mid) return query(l,mid,aa,bb,2*rt); else if(aa>mid) return query(mid+1,r,aa,bb,2*rt+1); else { return min(query(l,mid,aa,bb,2*rt),query(mid+1,r,aa,bb,2*rt+1)); } } char buffer[400000]; int main() { int i,aa,bb; lll val,ans; while(scanf("%d",&n)!=EOF) { for(i=1;i<=n;i++) { scanf("%I64d",&a[i]); } build(1,n,1); scanf("%d",&m); gets(buffer); for(i=0;i<m;i++) { gets(buffer); stringstream ss(buffer); ss>>aa>>bb; aa++,bb++; if(ss>>val) { if(aa<=bb) { add(1,n,aa,bb,val,1); } else { add(1,n,aa,n,val,1); add(1,n,1,bb,val,1); } } else { if(aa<=bb) ans = query(1,n,aa,bb,1); else { lll res = query(1,n,aa,n,1); ans = query(1,n,1,bb,1); ans = min(ans,res); } printf("%I64d\n",ans); } } } return 0; }
H.Vessels ---Codeforces 371D
这道题我原来出的时候记得是线段树,但是后来看别人的代码,没看见一个用线段树写的,,我去。原来硬搞也能过。。难点是想到,。下面放我借鉴别人的代码吧:
代码:
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; #define N 200010 int cap[N],jp[N],a[N]; int main() { int n,m; int i,j; int op,pos,val; int st; while(scanf("%d",&n)!=EOF) { memset(cap,0,sizeof(cap)); for(i=1;i<=n;i++) { scanf("%d",&a[i]); jp[i] = i; } scanf("%d",&m); for(i=0;i<m;i++) { scanf("%d",&op); if(op == 1) { scanf("%d%d",&pos,&val); st = jp[pos]; while(cap[st]+val>=a[st]&&st<=n) { val -= (a[st]-cap[st]); cap[st] = a[st]; st++; } if(st<=n) cap[st] += val; for(j=jp[pos];j<st;j++) { jp[j] = st; } jp[pos] = st; } else { scanf("%d",&pos); printf("%d\n",cap[pos]); } } } return 0; }