- Python机器学习实战:人脸识别技术的实现和挑战
AI天才研究院
AI大模型企业级应用开发实战大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python机器学习实战:人脸识别技术的实现和挑战作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:人脸识别技术,模型训练,多人识别,动态人脸检测,应用场景1.背景介绍1.1问题的由来随着科技的进步和互联网的普及,人脸识别技术因其在安全验证、生物特征识别、智能监控等多个领域的广泛应用而迅速崛起。从传统的门禁系统到现代的人脸支付、社交媒体的自动登
- 谷歌Gemini1.5火速上线:MoE架构,100万上下文
AI生成曾小健
#混合专家模型MOELLM大语言模型人工智能深度学习pytorch机器学习python
谷歌Gemini1.5火速上线:MoE架构,100万上下文机器之心2024-02-1608:53北京机器之心报道机器之心编辑部今天,谷歌宣布推出Gemini1.5。Gemini1.5建立在谷歌基础模型开发和基础设施的研究与工程创新的基础上,包括通过新的专家混合(MoE)架构使Gemini1.5的训练和服务更加高效。谷歌现在推出的是用于早期测试的Gemini1.5的第一个版本——Gemini1.5P
- 代码随想录算法训练营Day38||完全背包问题、leetcode 518. 零钱兑换 II 、 377. 组合总和 Ⅳ 、70. 爬楼梯 (进阶)
jiegongzhu3z
算法leetcode职场和发展
一、完全背包问题相较于01背包,完全背包的显著特征是每个物品可以用无数次,遍历顺序也不需要为了保证每个物品只去一次而倒序遍历。#include#includeusingnamespacestd;intmain(){intN,V;cin>>N>>V;vectorweight(N+1,0);vectorvalue(N+1,0);for(inti=0;i>weight[i]>>value[i];}vec
- 【TIMM应用】timm加载模型create_model,使用本地预训练模型
pen-ai
深度学习python深度学习神经网络卷积神经网络
timm加载模型create_model使用本地预训练模型1.常规方式,从https://huggingface.co/上下载1-1.timm库中create_model函数的用法1.最简单的用法2.查看可以直接创建的预训练模型列表3.参数:pretrained=True2.使用本地的预训练模型2-1.国内镜像下载模型:https://hf-mirror.com/2-2.查找对应模型名称2-3.调
- AI模型升级版0.02
pps-key
pythonAI写作学习gpt
根据您的需求,我将提供一个升级版的AI对话模型的实现代码,该模型可以在Windows上运行,并支持训练和微调。我们将使用HuggingFace的transformers库和torch库来实现这个目标。同时,我会结合最新的技术趋势,例如强化微调(ReinforcementFine-Tuning),来提升模型的性能。步骤1:安装必要的库首先,确保您的Windows系统上安装了Python(推荐Pyth
- VARGPT:将视觉理解与生成统一在一个模型中,北大推出支持混合模态输入与输出的多模态统一模型
蚝油菜花
每日AI项目与应用实例人工智能开源
❤️如果你也关注AI的发展现状,且对AI应用开发非常感兴趣,我会每日分享大模型与AI领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!微信公众号|搜一搜:蚝油菜花快速阅读模型简介:VARGPT是北京大学推出的多模态大语言模型,专注于视觉理解和生成任务。主要功能:支持混合模态输入输出、高效视觉生成和广泛的多模态任务。技术原理:基于自回归框架,采用三阶段训练策略,
- 【代码随想录训练营】【Day01】第一章|数组|数组理论基础|704.二分查找|27.移除元素
蚝油菜花
算法leetcode代码随想录
数组理论基础数组是在编程中非常常见的数据存储结构,主要有以下几个特点:数组的存储地址是一片连续的空间数组中存储的元素都是相同类型的修改数组中某一元素的值时,只能覆盖(重新赋值)更多有关数组的理论基础可查阅:《代码随想录》数组理论基础704.二分查找题目详细:LeetCode.704注意:二分查找对数据样本有明确的要求,即数组中的元素是有序的,所以在今后遇到类似于“在有序的数据样本中查找某一目标数据
- 【代码随想录训练营】【Day03】第二章|链表|链表理论基础|203.移除链表元素|707.设计链表|206.反转链表
蚝油菜花
链表数据结构
链表理论基础链表的结构类似于一串珠子,每一颗珠子就相当于链表上的一个节点;每一个节点则由数据域和指针域构成,数据域用于存放数据,指针域用于指向其它一个节点或空节点(链表尾部)。链表与数组的主要区别在于:数组是在内存中是连续分布的,但是链表在内存中不是连续分布的。数组在定义的时候,长度就是固定的,如果想改动数组的长度,就需要重新定义一个新的数组。链表的长度是不固定的,可以进行动态增删,适合数据量不固
- 代码随想录训练营Day3|Leetcode 203.移除链表元素 Leetcode 707.设计链表 Leetcode 206.反转链表
?��??
leetcode链表算法
编程语言:C#链表定义*publicclassListNode{*publicintval;*publicListNodenext;*publicListNode(intval=0,ListNodenext=null){*this.val=val;*this.next=next;*}*}Leetcode203.移除链表元素题目链接:203.移除链表元素-力扣(LeetCode)题意:删除链表中等于
- DeepSeek-V2:强大、经济、高效的专家混合语言模型
乌芬维Maisie
DeepSeek-V2:强大、经济、高效的专家混合语言模型DeepSeek-V2项目地址:https://gitcode.com/gh_mirrors/de/DeepSeek-V2项目介绍DeepSeek-V2是一款强大的专家混合(Mixture-of-Experts,MoE)语言模型,以其经济高效的训练和推理能力著称。该模型总参数达到2360亿,但每次生成时仅激活210亿参数,显著降低了计算成本
- DeepSeek-R1,DeepSeek-V3,DeepSeek-VL,DeepSeek-V2,DeepSeek-R1-Zero各个模型区别
fpga和matlab
前言技术汇集#人工智能大模型DeepSeek
目录1.各个模型架构2.训练方式3.模型参数与规模4.应用场景5.性能表现6.发布时间7.价格1.各个模型架构DeepSeek-R1:未明确有特殊架构说明,但属于推理模型,可能在Transformer架构基础上针对推理做了优化,通过强化学习训练实现大量反思和验证。DeepSeek-V3:是混合专家(MoE)语言模型,采用Transformer架构。DeepSeek-VL:整体上是decoder-o
- 强化学习中的关键模型与算法:从Actor-Critic到GRPO
人工智能
强化学习中的关键模型与算法:从Actor-Critic到GRPO强化学习中的Actor-Critic模型是什么?这与生成对抗网络(GANs)十分相似。在生成对抗网络中,生成器和判别器模型在整个训练过程中相互对抗。在强化学习的Actor-Critic模型中,也存在类似的概念:Actor-Critic(A2C、A3C)是一种流行的强化学习架构,它结合了两个组件:Actor(行动者)——学习策略($\p
- 从零开始大模型开发与微调:汉字拼音数据集处理
AGI大模型与大数据研究院
大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
从零开始大模型开发与微调:汉字拼音数据集处理1.背景介绍1.1问题的由来在人工智能领域,自然语言处理(NLP)是一项基础且重要的研究方向。随着深度学习技术的飞速发展,大规模语言模型(LargeLanguageModel,LLM)在NLP领域取得了显著的成果。然而,LLM的训练与微调过程往往需要海量的文本数据,而这些数据通常以自然语言形式存在,难以直接用于模型训练。因此,如何从自然语言数据中提取结构
- 2024年开源数据集地址汇总包含最新最全数据集在这你可以找到任何想要数据集
萌萌哒240
深度学习目标跟踪人工智能计算机视觉
目标检测数据集和图像分类数据集是计算机视觉领域的两大重要资源,它们为训练和评估各种视觉模型提供了关键的数据支持。目标检测数据集主要用于训练模型以识别和定位图像中的特定物体。这类数据集通常包含大量的标注图像,每张图像中都标记了多个物体的位置和类别。例如,COCO(CommonObjectsinContext)数据集就是一个常用的目标检测数据集,它包含了80个类别的日常物体,如人、车、动物等,并提供了
- 穷人为什么生活的很艰难?
北纬文公子
生活职场和发展赚钱思考
因为对这个世界缺乏体系化的认识,因为没有体系化的竞争输出。1、为什么说是体系化呢?因为只要是生活在这个世界的一员,他就自然的会有对这个世界的认识。因为只是是有生存能力的人,他就自然的会有其自己的生存策略和竞争策略。而这些是远远不够的,人与人的竞争是一场持续时间长,涉及维度广的“马拉松运动”。这关于你的体能天赋,长时间的体能训练,以及你的技巧设计,如配速,呼吸调整,跑步姿势,营养补给,心理调整,赛前
- 一张图看懂AI技术架构!开发、训练、部署全链路深度解析!
和老莫一起学AI
人工智能数据挖掘学习llamaai大模型程序员
人工智能(AI)技术的快速发展,使得企业在AI模型的开发、训练、部署和运维过程中面临前所未有的复杂性。从数据管理、模型训练到应用落地,再到算力调度和智能运维,一个完整的AI架构需要涵盖多个层面,确保AI技术能够高效、稳定地运行。本文将基于AI技术架构全景图,深入剖析AI的开发工具、AI平台、算力与框架、智能运维四大核心部分,帮助大家系统性地理解AI全生命周期管理。一、AI开发工具:赋能高效开发,提
- 【Legged Gym】Legged Gym训练参数详解与自定义任务实现
啵啵啵啵哲
人工智能
LeggedGym训练参数详解与自定义任务实现在进行机器人强化学习训练时,LeggedGym提供了一套灵活的参数配置系统,以适应不同的训练需求和环境。本文将详细解析LeggedGym训练时的关键参数,并特别强调如何通过自定义task来实现新任务的训练。同时,也会解释rl_device和sim_device的赋值方法及其区别。1.参数详解1.1.任务与实验配置--task:指定训练任务的类型,如an
- 〖Python WEB 自动化测试实战篇⑥〗- selenium元素定位之find-elements
哈哥撩编程
#④-自动化测试实战篇Python全栈白宝书pythonpython自动化测试实战WEB自动化测试实战selenium元素定位
>【易编橙·终身成长社群,相遇已是上上签!】-点击跳转~<作者:哈哥撩编程(视频号、B站、抖音同名)图书作者:程序员职场效能宝典博客专家:全国博客之星第四名超级个体:COC上海社区主理人特约讲师:谷歌亚马逊分享嘉宾科技博主:极星会首批签约作者 大家好,我是哈哥,一位35岁但是依然头发茂密的程序员老兵,目前在公司开启了养老模式。现在热衷于分享各种编程领域的软硬技能知识以及前沿技术,在过去的三
- 什么是“知识蒸馏”
清风AI
深度学习人工智能神经网络pythonconda
定义与原理在深度学习领域不断突破的同时,模型的复杂度和计算需求也随之增加。为了解决这一问题,知识蒸馏技术应运而生,成为模型压缩和性能优化的重要手段。本节将详细介绍知识蒸馏的基本概念、工作原理和知识迁移机制。知识蒸馏是一种将大型预训练模型(教师模型)的知识转移到较小模型(学生模型)的技术。这种方法不仅能保留原有模型的性能,还能显著降低模型的复杂度和计算需求,使其更适合在资源受限的环境中部署。知识蒸馏
- isaac gym 和 legged gym 环境搭建记录
咋学都不累zgc
ubuntu
今天使用fanziqi大佬的rl_docker搭建了一个isaacgym下的四足机器人训练环境,成功运行leggedgym项目下的例子,记录一下搭建流程基础配置OperatingSystem:Ubuntu22.04.5LTSKernel:Linux6.8.0-49-genericArchitecture:x86-64HardwareVendor:MECHREVOHardwareModel:Yaos
- DeepSeek 使用的核心技术预测
eso1983
人工智能深度学习机器学习python
最近DeepSeek这个词算是火遍了整个AI圈,这个影响力迅速超过ChatGPT的产品,都会使用哪些技术来做支撑呢。我这里简单做了一下梳理,结果不一定会完全准确,但是对这类产品的技术架构有个大概的认识。以下是我对可能涉及的技术架构的梳理,希望大家踊跃参与评论。1.大规模预训练模型架构Transformer变种与优化:基于Transformer架构进行改进,可能引入稀疏注意力机制(如Longform
- LLM - 大模型 ScallingLaws 的设计 100B 预训练方案(PLM) 教程(5)
ManonLegrand
大模型(LLM)人工智能LLMScalingLaws100B预训练DeepNormEGS
欢迎关注我的CSDN:https://spike.blog.csdn.net/本文地址:https://spike.blog.csdn.net/article/details/145356022免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。ScalingLaws(缩放法则)是大模型领域中,用于描述模型性能(Loss)与模型规模N、数据量D、计算资源C之间关系的经验规
- TensorFlow 示例摄氏度到华氏度的转换(一)
李建军
TensorFlowtensorflow人工智能python
TensorFlow实现神经网络模型来进行摄氏度到华氏度的转换,可以将其作为一个回归问题来处理。我们可以通过神经网络来拟合这个简单的转换公式。1.数据准备与预处理2.构建模型3.编译模型4.训练模型5.评估模型6.模型应用与预测7.保存与加载模型8.完整代码1.数据准备与预处理你提供了摄氏度和华氏度的数据,并进行了标准化。标准化是为了使数据适应神经网络的训练,因为标准化可以加快训练过程并提高模型性
- 探索未来开发新纪元:**星辰大海——高效能全栈开发框架**
尚舰舸Elsie
探索未来开发新纪元:星辰大海——高效能全栈开发框架minemacsMinEmacs:anEmacsconfigurationframeworkfordailyuse项目地址:https://gitcode.com/gh_mirrors/mi/minemacs项目介绍在浩瀚的编程宇宙中,星辰大海犹如一颗璀璨的新星,以其独特的光芒照亮了全栈开发的道路。这是一款由一群热情洋溢的技术极客倾力打造的开源项目
- 【pytorch(cuda)】基于DQN算法的无人机三维城市空间航线规划(Python代码实现)
科研_G.E.M.
pythonpytorch算法
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、研究背景与意义二、DQN算法概述三、基于DQN的无人机三维航线规划方法1.环境建模2.状态与动作定义3.奖励函数设计4.深度神经网络训练5.航线规划四、研究挑战与展望2运行结果3参考文献4Python代码实现⛳️赠与读者做科研,涉及到一个深在的
- 监督学习、无监督学习和强化学习的特点和应用场景
BugNest
AI学习ai机器学习人工智能
在机器学习中,监督学习、无监督学习和强化学习是三种核心的学习范式,它们各自具有独特的特点和应用场景。以下是对这三种学习方法的详细对比和总结:监督学习(SupervisedLearning)特点:数据标注:训练数据包含明确的输入特征和对应的标签(目标输出)。学习方式:模型通过学习输入特征和标签之间的关系来进行训练,这种关系通常表现为一个映射函数。预测能力:一旦训练完成,模型能够对新的、未见过的输入数
- Scikit-learn_聚类算法_K均值聚类
飞Link
Water算法机器学习人工智能
一.描述首先从X数据集中选择k个样本作为质心,然后重复以下两个步骤来更新质心,直到质心不再显著移动为:第一步将每个样本分配到距离最近的质心第二步根据每二个质心所有样本的平均值来创建新的质心二.用法和参数KMeans类MiniBatchKMeans类:是KMeans类的变种,他是用小批量来减少计算时间,而多个批次仍然尝试优化相同的目标函数。小批量是输入数据的子集,是每次训练迭代中的随机抽样。小批量大
- 性能测试网络风险诊断有哪些?
Feng.Lee
漫谈测试开发语言
目录一、网络定位分析手段二、sar命令三、netstat命令以下是几种常见的网络风险诊断方法网络连通性检查带宽与延迟测量丢包率分析网络拓扑结构审查安全设备影响评估协议层面上的优化负载均衡器效能检验云化服务架构下的特殊考量系统应用之间的交换,尤其是跨机器之间,都是要基于网络的,因此网络宽带,响应时间,网络延迟,阻塞等都是影响系统性能的因素。如果应用在不稳定,不安全的网络下,则会导致应用程序的超时,丢
- 使用 Python 的 LSTM 进行股市预测
无水先生
数据分析深度学习人工智能综合pythonlstm开发语言
目录一、说明二、为什么需要时间序列模型?三、下载数据3.1从Alphavantage获取数据3.1从Kaggle获取数据3.3数据探索3.4数据可视化四、将数据拆分为训练集和测试集五、数据标准化六、通过平均进行一步预测6.1标准平均值6.2指数移动平均线6.3如果指数移动平均线这么好,为什么还需要更好的模型?6.4预测未来不止一步七、LSTM简介:预测未来的股票走势7.1数据生成器7.2数据增强7
- 什么是LLM?看这一篇就够了!
Python程序员罗宾
人工智能语言模型AIGC自然语言处理
前言自从2022年12月ChatGPT横空面世以来,AI领域获得了十足的关注和资本,其实AI的概念在早些年也火过一波,本轮AI热潮相比于之前的AI,最大的区别在于:生成式。本文主要介绍大语言模型(LargeLanguageModel,简称LLM)。大语言模型介绍什么是大语言模型(LLM)通过海量文本训练的、能识别人类语言、执行语言类任务、拥有大量参数的模型,称之为大语言模型。GPT、LLaMA、M
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag