C - 单点更新3 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit Status Description The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj. For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following: a1, a2, ..., an-1, an (where m = 0 - the initial seqence) a2, a3, ..., an, a1 (where m = 1) a3, a4, ..., an, a1, a2 (where m = 2) ... an, a1, a2, ..., an-1 (where m = n-1) You are asked to write a program to find the minimum inversion number out of the above sequences. Input The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1. Output For each case, output the minimum inversion number on a single line. Sample Input 10 1 3 6 9 0 8 5 7 4 2 Sample Output 16
代码如下:
【还是模板题,~T^T呜呜呜~没把题意读清楚,搞得理解了半天,讨厌死了~话说用线段树比暴力快了100倍呢⊙﹏⊙】
#include <cstdio> #include <algorithm> using namespace std; #define lson l , m , rt << 1 #define rson m + 1 , r , rt << 1 | 1 const int maxn = 5010; int sum[maxn<<2]; void PushUP(int rt) { sum[rt] = sum[rt<<1] + sum[rt<<1|1]; } void build(int l,int r,int rt) { sum[rt] = 0; if (l == r) return ; int m = (l + r) >> 1; build(lson); build(rson); } void update(int p,int l,int r,int rt) { if (l == r) { sum[rt] ++; return ; } int m = (l + r) >> 1; if (p <= m) update(p , lson); else update(p , rson); PushUP(rt); } int query(int L,int R,int l,int r,int rt) { if (L <= l && r <= R) { return sum[rt]; } int m = (l + r) >> 1; int ret = 0; if (L <= m) ret += query(L , R , lson); if (R > m) ret += query(L , R , rson); return ret; } int x[maxn]; int main() { int n; while (~scanf("%d",&n)) { build(0 , n - 1 , 1); int sum = 0; for (int i = 0 ; i < n ; i ++) { scanf("%d",&x[i]); sum += query(x[i] , n - 1 , 0 , n - 1 , 1); update(x[i] , 0 , n - 1 , 1); } int ret = sum; for (int i = 0 ; i < n ; i ++) { sum += n - x[i] - x[i] - 1; ret = min(ret , sum); } printf("%d\n",ret); } return 0; }