【wikioi】1904 最小路径覆盖问题(最大流+坑人的题+最小路径覆盖)

http://wikioi.com/problem/1904/

这题没看数据的话是一个大坑(我已报告官方修复了),答案只要求数量,不用打印路径。。。orz

最小路径覆盖=n-最大匹配,这个我在说二分图匹配时讲过的。

但是如果用最大流打印路径怎么办呢?在增广时记录增广路的点之间的链接,然后一个个打印即可。

#include <cstdio>

#include <cstring>

#include <cmath>

#include <string>

#include <iostream>

#include <algorithm>

using namespace std;

#define rep(i, n) for(int i=0; i<(n); ++i)

#define for1(i,a,n) for(int i=(a);i<=(n);++i)

#define for2(i,a,n) for(int i=(a);i<(n);++i)

#define for3(i,a,n) for(int i=(a);i>=(n);--i)

#define for4(i,a,n) for(int i=(a);i>(n);--i)

#define CC(i,a) memset(i,a,sizeof(i))

#define read(a) a=getint()

#define print(a) printf("%d", a)

#define dbg(x) cout << #x << " = " << x << endl

#define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; }

inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }

inline const int max(const int &a, const int &b) { return a>b?a:b; }

inline const int min(const int &a, const int &b) { return a<b?a:b; }



const int N=5010, M=2000000, oo=~0u>>1, s=5000, t=s+1;

int ihead[N], cnt=1, d[N], p[N], cur[N], gap[N], n, m, to[N], vis[N];

struct ED { int from, to, cap, w, next; } e[M];

inline void add(const int &u, const int &v, const int &c) {

	e[++cnt].next=ihead[u]; ihead[u]=cnt; e[cnt].to=v; e[cnt].from=u; e[cnt].cap=c;

	e[++cnt].next=ihead[v]; ihead[v]=cnt; e[cnt].to=u; e[cnt].from=v; e[cnt].cap=0;

}

int isap(const int &s, const int &t, const int &nn) {

	for1(i, 0, t) cur[i]=ihead[i];

	CC(d, 0); CC(gap, 0);

	int ret=0, i, f, u=s;

	gap[0]=nn;

	while(d[s]<nn) {

		for(i=cur[u]; i; i=e[i].next) if(e[i].cap && d[u]==d[e[i].to]+1) break;

		if(i) {

			p[e[i].to]=cur[u]=i; u=e[i].to;

			if(u==t) {

				for(f=oo; u!=s; u=e[p[u]].from) f=min(f, e[p[u]].cap);

				for(u=t; u!=s;) {

					int tp=e[p[u]].from;

					to[tp]=u;

					if(to[tp]-n>0) vis[tp-n]=1;

					u=tp;

				}

				for(u=t; u!=s; u=e[p[u]].from) e[p[u]].cap-=f, e[p[u]^1].cap+=f;

				ret+=f;

			}

		}

		else {

			if(! (--gap[d[u]]) ) break;

			d[u]=nn; cur[u]=ihead[u];

			for(i=ihead[u]; i; i=e[i].next) if(e[i].cap && d[u]>d[e[i].to]+1) d[u]=d[e[i].to]+1;

			++gap[d[u]];

			if(u!=s) u=e[p[u]].from;

		}

	}

	return ret;

}

int main() {

	read(n); read(m);

	int u, v;

	rep(i, m) {

		read(u); read(v);

		add(u, v+n, oo);

	}

	for1(i, 1, n) add(s, i, 1), add(i+n, t, 1);

	int ans=n-isap(s, t, t);

	for1(i, 1, n) {

		if(vis[i]) continue;

		print(i);

		for(u=i; to[u]; u=to[u]-n) printf(" %d", to[u]-n);

		puts("");

	}

	print(ans);

	return 0;

}

 

 


 

 

题目描述 Description

给定有向图G=(V,E)。设P 是G 的一个简单路(顶点不相交)的集合。如果V 中每个
顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖。P 中路径可以从V 的任何一个顶
点开始,长度也是任意的,特别地,可以为0。G 的最小路径覆盖是G 的所含路径条数最少
的路径覆盖。
设计一个有效算法求一个有向无环图G 的最小路径覆盖。

对于给定的给定有向无环图G,编程找出G的一个最小路径覆盖。

输入描述 Input Description

第1 行有2个正整数n和m。n是给定有向无环图
G 的顶点数,m是G 的边数。接下来的m行,每行有2 个正整数i和j,表示一条有向边(i,j)。

输出描述 Output Description

将最小路径覆盖输出。从第1 行开始,每行输出
一条路径。文件的最后一行是最少路径数。

样例输入 Sample Input

11 12
1 2
1 3
1 4
2 5
3 6
4 7
5 8
6 9
7 10
8 11
9 11
10 11

样例输出 Sample Output

1 4 7 10 11
2 5 8
3 6 9
3

数据范围及提示 Data Size & Hint

你可能感兴趣的:(最大流)