2.9.1 算法时间复杂度定义
在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级。算法的时间复杂度,也就是算法的时间量度,记作:T(n) = O(f(n))。它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐近时间复杂度,简称为时间复杂度。其中f(n)是问题规模n的某个函数。
这样用大写O()来体现算法时间复杂度的记法,我们称之为大O记法。
一般情况下,随着n的增大,T(n)增长最慢的算法为最优算法。
显然,由此算法时间复杂度的定义可知,我们的三个求和算法的时间复杂度分别为O(n),O(1),O(n2)。我们分别给它们取了非官方的名称,O(1)叫常数阶,O(n)叫线性阶,O(n2)叫平方阶,当然,还有其他的一些阶,我们之后会介绍。
2.9.2 推导大O阶方法
那么如何分析一个算法的时间复杂度呢?即如何推导大O阶呢?我们给出了下面的推导方法,基本上,这也就是总结前面我们举的例子
哈,仿佛是得到了游戏攻略一样,我们好像已经得到了一个推导算法时间复杂度的万能公式。可事实上,分析一个算法的时间复杂度,没有这么简单,我们还需要多看几个例子。
2.9.3 常数阶
首先顺序结构的时间复杂度。下面这个算法,也就是刚才的第二种算法,为什么时间复杂度不是O(3),而是O(1)。
int sum = 0,n = 100; /*执行一次*/ sum = (1+n)*n/2; /*执行一次*/ printf("%d", sum); /*执行一次*/
int sum = 0, n = 100; /*执行一次*/ sum = (1+n)*n/2; /*执行第1次*/ sum = (1+n)*n/2; /*执行第2次*/ sum = (1+n)*n/2; /*执行第3次*/ sum = (1+n)*n/2; /*执行第4次*/ sum = (1+n)*n/2; /*执行第5次*/ sum = (1+n)*n/2; /*执行第6次*/ sum = (1+n)*n/2; /*执行第7次*/ sum = (1+n)*n/2; /*执行第8次*/ sum = (1+n)*n/2; /*执行第9次*/ sum = (1+n)*n/2; /*执行第10次*/ printf("%d",sum); /*执行一次*/
2.9.4 线性阶
循环结构就会复杂很多。要确定某个算法的阶次,我们常常需要确定某个特定语句或某个语句集运行的次数。因此,我们要分析算法的复杂度,关键就是要分析循环结构的运行情况。
下面这段代码,它的循环的时间复杂度为O(n)。因为循环体中的代码须要执行n次。
int i; for(i = 0; i < n; i++) { /*时间复杂度为O(1)的程序步骤序列*/ }
int count = 1; while (count < n) { count = count * 2; /*时间复杂度为O(1)的程序步骤序列*/ }
2.9.6 平方阶
下面的例子是一个循环嵌套,它的内循环刚才我们已经分析过,时间复杂度为O(n)。
int i,j; for(i = 0; i < n; i++) { for (j = 0; j < n;j++) { /*时间复杂度为O(1)的程序步骤序列*/ } }
int i,j; for(i = 0; i < m; i++) { for (j = 0; j < n; j++) { /*时间复杂度为O(1)的程序步骤序列*/ } }
int i,j; for(i = 0; i < n; i++) { for (j = i; j < n; j++) /*注意int j = i而不是0*/ { /*时间复杂度为O(1)的程序步骤序列*/ } }
用我们推导大O阶的方法,第一条,没有加法常数不予考虑;第二条,只保留最高阶项,因此保留n2/2;第三条,去除这个项相乘的常数,也就是去除1/2,最终这段代码的时间复杂度为O(n2)。
从这个例子,我们也可以得到一个经验,其实理解大O推导不算难,难的是对数列的一些相关运算,这更多的是考察你的数学知识和能力,所以想考研的朋友,要想在求算法时间复杂度这里不失分,可能需要强化你的数学,特别是数列方面的知识和解题能力。
我们继续看例子,对于方法调用的时间复杂度又如何分析。
int i,j; for(i = 0; i < n; i++) { function(i); }
上面这段代码调用一个函数function。
void function(int count) { print(count); }
void function(int count) { int j; for (j = count; j < n;j++) { /*时间复杂度为O(1)的程序步骤序列*/ } }
n++; /*执行次数为1*/ function(n); /*执行次数为n*/ int i,j; for(i = 0; i < n; i++) /*执行次数为n2*/ { function (i); } for(i = 0; i < n; i++) /*执行次数为n(n + 1)/2*/ { for (j = i;j < n; j++) { /*时间复杂度为O(1)的程序步骤序列*/ } }