- 深度应用场景:DeepSeek —— 探索AI赋能的智慧未来
人工智能专属驿站
人工智能
深度应用场景:DeepSeek——探索AI赋能的智慧未来随着人工智能的迅猛发展,数据的价值已不再局限于简单的存储与处理,它们正变得更加智能与高效。DeepSeek,这一创新的AI技术平台,正以其独特的深度学习能力,开启了各行各业的智能化变革。让我们走进一个由DeepSeek打造的深度应用场景,探索它如何推动未来的发展。1.智能医疗:精准诊断,拯救生命想象一下,医生们不再是唯一的诊断专家,而是与AI
- 【面试准备】运维工程师
C.尚水.Y
我的面试准备面试运维职场和发展
面试目标:岗位职责分析:1、IT相关设备、环境、运行状况的采购、安装、维护、保养、检查、IT资产管理;2、防火墙、路由器、网络交换机、VPN、服务器等性能优化,配置修改;3、光纤和ADSL线路的监控、测试、报障;4、ERP账号、文件服务器等软件账号的开放与权限管理、维护;5、邮箱OA服务器、文件服务器、ERP数据库服务器的日常管理、维护;6、公司网络工程的规划、项目实施、技术支持;—对这个运维工程
- 如何用 python 获取实时的股票数据?_python efinance(2)
元点三
2024年程序员学习pythonjavalinux
先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!因此收集整理了一份《2024年最新Python全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课
- 如何用 python 获取实时的股票数据?_python efinance,2024年最新pdf面试简历
元点三
2024年程序员学习pythonpdf面试
先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!因此收集整理了一份《2024年最新Python全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课
- 卷积神经网络之AlexNet经典神经网络,实现手写数字0~9识别
知识鱼丸
深度学习神经网络cnn人工智能深度学习AlexNet经典神经网络
深度学习中较为常见的神经网络模型AlexNet,AlexNet是一个采用GPU训练的深层CNN,本质是种LeNet变体。由特征提取层的5个卷积层两个下采样层和分类器中的三个全连接层构成。先看原理:AlexNet网络特点采用ReLU激活函数,使训练速度提升6倍采用dropout层,防止模型过拟合通过平移和翻转的方式对数据进行增强采用LRN局部响应归一化,限制数据大小,防止梯度消失和爆炸。但后续证明批
- 小白入门笔记:CMake编译过程详解
3D视觉工坊
3D视觉从入门到精通笔记c++开发语言
作者丨SkyShaw@知乎点击进入—>3D视觉工坊学习交流群1、你好,CMake1.1CMake是什么?我觉得针对这个问题最简单(但不是最正确的)的回答应该是:“CMake是服务于将源代111码转换成可执行的文件的工具”。将源码转换为可工作应用会比较神奇。不仅是效果本身(即设计并赋予生命的工作机制),而且是将理念付诸于过程的行为本身。CMake本身是一个工具集,由五个可执行的程序组成:cmake、
- JVM调优 从Full GC报警到性能提升90%的调优实录
C_V_Better
jvmjavajava性能优化jvmjava
背景事故现场:某社交APP晚高峰突发服务卡顿,用户消息延迟飙升监控大屏:GC时间从50ms/次→5秒/次堆内存锯齿状波动(配Prometheus图表)“FullGC每分钟触发3次,但堆内存却越回收越少?”一、GC日志分析——JVM的“心电图”解读1.日志结构全解析[GC(AllocationFailure)[PSYoungGen:614400K->24064K(614400K)]614400K->
- 灰色系统理论及其关联分析方法
青橘MATLAB学习
算法matlab数学建模
前言在现实世界中,许多系统的内部结构、参数及特征并未完全被人们认知。例如,粮食产量受肥料、气象、政策等多因素影响,但各因素与产量间的定量关系难以明确。这类部分信息已知、部分信息未知的系统被称为灰色系统。灰色系统理论从数据本征特性出发,通过有限信息挖掘系统规律,为信息匮乏或紊乱的问题提供建模与分析方法。本章将介绍灰色系统的基本概念及其核心方法——关联分析,揭示如何通过动态态势量化解决实际问题。§1灰
- 使用Python获取在线股票交易网站的实时交易数据
嵌入式开发项目
2025年爬虫精通专栏python开发语言爬虫
目录步骤1:选择股票交易网站步骤2:使用requests库发送HTTP请求步骤3:解析HTML内容步骤4:提取实时交易数据步骤5:存储和使用数据在金融市场中,实时交易数据对于投资者来说具有重要的价值。实时的股票价格、交易量和其他市场指标可以帮助投资者做出更准确的决策,同时也是进行金融分析和建模的重要数据源。在本篇博客中,我们将学习如何使用Python获取在线股票交易网站的实时交易数据。在开始之前,
- DeepSeek掀起推理服务器新风暴,AI应用迎来变革转折点?
小深ai硬件分享
人工智能大数据
AI浪潮下,推理服务器崭露头角在科技飞速发展的当下,AI是耀眼明星,席卷各行业,深刻改变生活与工作模式,从语音助手到医疗诊断、金融风险预测,AI无处不在。其发展分数据收集整理、模型训练、推理应用三个阶段,过去重模型训练,如今大量预训练模型出现,如何高效应用成新挑战,推理服务器应运而生。推理服务器是运行AI模型、对输入数据实时分析预测的硬件设备,堪称AI应用“幕后英雄”。在自动驾驶、智能安防、电商推
- 【人工智能】提升编程效率的6种GPT实用应用技巧!保姆级讲解!
ChatGPT-千鑫
人工智能AI领域人工智能gptAI编程
文章目录实用教程:六大AI编程技巧解锁效率提升技巧1:快速实现需求demo操作步骤技巧2:代码审查——AI帮你提升代码质量操作步骤技巧3:错误排查——AI助你快速定位问题操作步骤技巧4:代码注释——AI帮你理解复杂逻辑操作步骤技巧5:数据整理——AI帮你高效准备测试数据操作步骤技巧6:学习未知代码库——AI助你快速掌握新工具操作步骤使用教程:全面掌握CodeMoss的高效编程工具(1)VSCode
- 用 TensorFlow 搭建简单的手写数字识别模型
lozhyf
工作面试学习tensorflow人工智能python
一、引言手写数字识别是机器学习领域中一个经典且基础的问题,它在很多实际场景中都有广泛的应用,比如邮政系统中的邮件分拣、银行支票金额识别等。TensorFlow是一个强大的开源机器学习框架,由Google开发并维护,它提供了丰富的工具和接口,能帮助我们快速搭建和训练深度学习模型。在这篇博客中,我们将使用TensorFlow构建一个简单的神经网络模型,用于识别手写数字。二、环境准备在开始之前,你需要安
- 深入解析:Tableau在数据可视化中的高级应用
Echo_Wish
实战高阶大数据信息可视化数据分析数据挖掘
深入解析:Tableau在数据可视化中的高级应用引言在大数据时代,数据可视化已成为数据分析中不可或缺的一部分。作为一款广受欢迎的数据可视化工具,Tableau以其强大的功能和灵活性,赢得了众多数据分析师的青睐。然而,许多人在使用Tableau时,仅停留在基本操作层面,未能充分发挥其潜力。本文将深入探讨Tableau的高级应用,展示其在复杂数据分析中的强大能力,并以具体实例说明其实际应用效果。数据预
- 深度学习在医疗影像分析中的革命性应用
Echo_Wish
人工智能前沿技术深度学习人工智能
深度学习在医疗影像分析中的革命性应用引言医疗影像分析是现代医学中不可或缺的一部分,特别是在疾病诊断和治疗过程中发挥了至关重要的作用。随着深度学习技术的发展,医疗影像分析的效率和准确性得到了显著提升。本文将探讨如何利用深度学习技术,特别是Python编程语言,来优化医疗影像分析,展示具体的代码实例,并举例说明其实际应用效果。深度学习与医疗影像分析深度学习(DeepLearning)是一种基于人工神经
- vue制作导航栏html,Vue实现导航栏菜单
DataQueen
vue制作导航栏html
本文实例为大家分享了Vue实现导航栏菜单的具体代码,供大家参考,具体内容如下这里是刚学习vue的时候,没有用vue的任何UI组件库写的导航栏菜单。menu.html导航栏左项目名称您好,用户!v-bind:class="{checked:index==nowIndex}"v-on:click="setTab('menu',index,menus)">{{menu.text}}菜单一的内容菜单二的内
- 学习路之微服务--PHP中实现微服务几种方式
hopetomorrow
微服务学习微服务php
学习路之微服务--PHP中实现微服务实现微服务是一种将应用程序拆分成小型、独立的服务,每个服务都专注于完成特定的业务功能。通过这种方式,可以实现系统的高可伸缩性、可靠性和可维护性。在PHP中实现微服务可以采用以下几种方法:使用框架和组件:PHP提供了许多流行的框架和组件,如Laravel、Symfony和Lumen等,这些框架提供了许多开箱即用的功能,可以简化微服务的开发。可以使用这些框架来创建独
- yolov8人脸识别与脸部关键点检测(代码+原理)
QQ_1309399183
计算机视觉实战项目集锦YOLO人工智能人脸识别yolo人脸检测
YOLOv8脸部识别是一个基于YOLOv8算法的人脸检测项目,旨在实现快速、准确地检测图像和视频中的人脸。该项目是对YOLOv8算法的扩展和优化,专门用于人脸检测任务。YOLOv8是一种基于深度学习的目标检测算法,通过将目标检测问题转化为一个回归问题,可以实现实时的目标检测。YOLOv8Face项目在YOLOv8的基础上进行了改进,使其更加适用于人脸检测。以下是YOLOv8Face项目的一些特点和
- 【机器学习】基于3D CNN通过CT图像分类预测肺炎
MUKAMO
AIPython应用机器学习深度学习人工智能神经网络3DCNN
1.引言1.1.研究背景在医学诊断中,医生通过分析CT影像来预测疾病时,面临一些挑战和局限性:图像信息的广度与复杂性:CT扫描生成的大量图像对医生来说既是信息的宝库也是处理上的负担。每组CT数据可能包含数百张切片,医生必须迅速审阅这些图像,以便捕捉到病变的微小细节。这种庞大的信息量要求医生在有限的时间内做出精准诊断,但同时也增加了漏诊或误诊的风险。部分容积效应也可能模糊小病变的边界,使得准确诊断变
- TensorFlow LiteRT 概览
姚家湾
tensorflow人工智能python
LiteRT(简称LiteRuntime,以前称为TensorFlowLite)是Google面向设备端AI的高性能运行时。您可以找到适用于各种机器学习/AI任务的LiteRT就绪模型,也可以使用AIEdge转换和优化工具将TensorFlow、PyTorch和JAX模型转换为TFLite格式并运行。主要特性针对设备端机器学习进行了优化:LiteRT解决了五项关键的ODML约束条件:延迟时间(无需
- Python Web开发新选择:FastAPI框架详细教程
车载testing
pythonpython前端fastapi
PythonWeb开发新选择:FastAPI框架详细教程简介FastAPI是一个用于构建API的现代、快速(高性能)的Web框架,它基于Python3.6+的类型提示。本文将通过具体的示例,详细介绍如何使用FastAPI进行Web开发。一、FastAPI简介1.FastAPI能做什么?FastAPI适用于构建:Web站点WebAPI测试平台持续集成工具自动生成API文档2.为什么要学习FastAP
- 机器学习(1)安装Pytorch
CoderIsArt
机器学习与深度学习机器学习pytorch人工智能
1.安装命令pip3installtorchtorchvisiontorchaudio--index-urlhttps://download.pytorch.org/whl/cu1182.安装过程Log:Lookinginindexes:https://download.pytorch.org/whl/cu118CollectingtorchDownloadinghttps://download.
- 《从编程小白到人工智能大神:大学新生Python入门攻略》
千帆过尽.
python人工智能
前言在如今这个技术飞速发展的时代,编程已经成为许多大学生不可或缺的技能,尤其是对于人工智能方向的学生来说,编程更是必不可少的一部分。作为一名大三学生,并且专注于Python和人工智能方向,我深知刚开始学习编程时的挑战与迷茫。希望本文能帮助作为大学新生的你们在编程入门的过程中少走弯路,提供一条清晰有效的学习路径。一、编程语言选择作为编程新手,选择一门适合自己的编程语言至关重要。对于希望进入人工智能领
- 高德地图驾车导航内存优化原理与实战
数据库技术分享者
androidios
背景根据Apple官方WWDC的回答,减少内存可以让用户体验到更快的启动速度,不会因为内存过大而导致Crash,可以让APP存活的更久。对于高德地图来说,根据线上数据的分析,内存过高会导致导航过程中系统强杀OOM。尤其区别于其他APP的地方是,一般APP只需要关注前台内存过高的系统强杀FOOM,高德地图有不少用户使用后台导航,所以也需要关注后台的内存过高导致的系统强杀BOOM,且后台强杀较前台强杀
- 探索Vearch:高效的深度学习向量相似度搜索系统
scaFHIO
深度学习人工智能python
Vearch是一个可扩展的分布式系统,用于高效搜索深度学习向量的相似度。在本文中,我们将介绍Vearch的技术背景及其核心原理,演示如何使用VearchPythonSDK进行安装和设置,并分析一些实际应用场景,最后提供一些实战建议。技术背景介绍随着深度学习技术的发展,向量相似度搜索在各类应用中变得越来越重要。从图像识别、推荐系统到自然语言处理,向量搜索可以极大地提升系统的性能。然而,随着数据量的增
- 如何在Python中使用Etherscan API进行以太坊数据查询
scaFHIO
python开发语言
Etherscan是领先的区块链浏览器、搜索、API和分析平台,专注于以太坊——一个去中心化的智能合约平台。在本篇文章中,我们将介绍如何在Python中使用EtherscanAPI进行以太坊数据查询,并提供详细的代码示例。1.技术背景介绍Etherscan提供了丰富的API接口,允许开发者查询以太坊网络上的各种数据,包括交易、账户、合约等信息。使用这些API接口,开发者可以方便地集成以太坊数据到自
- Anaconda 配置镜像源
猿代码_xiao
pythonpytorchpython深度学习
Anaconda镜像使用帮助Anaconda是一个用于科学计算的Python发行版,支持Linux,Mac,Windows,包含了众多流行的科学计算、数据分析的Python包。Anaconda安装包可以到https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/下载。TUNA还提供了Anaconda仓库与第三方源(conda-forge、msys2
- 27岁大龄转码秋招惨败,朋友劝我转Java来得及吗?还是继续走前端或机器学习?
程序员yt
java机器学习开发语言
今天给大家分享的是一位粉丝的提问,27岁大龄转码秋招惨败,朋友劝我转Java来得及吗?还是继续走前端或机器学习?接下来把粉丝的具体提问和我的回复分享给大家,希望也能给一些类似情况的小伙伴一些启发和帮助。同学提问:211建筑本科,22年毕业后gap一年转码去了英国读的QS100的it的水硕(24年12月份毕业),转码后对就业形势认知不足,时间全花在课业上,八股文和算法准备的不充足,秋招算是惨败。读研
- 华为的云端训练算力与迭代效率
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
华为云、云端训练、算力、迭代效率、人工智能、深度学习、模型训练、分布式训练、优化算法1.背景介绍人工智能(AI)技术近年来发展迅速,深度学习作为其核心驱动力,在图像识别、自然语言处理、语音识别等领域取得了突破性进展。然而,深度学习模型的训练需要海量数据和强大的计算资源,这成为AI技术发展面临的瓶颈之一。云计算作为一种新型的计算模式,为深度学习提供了强大的算力支持。华为云作为国内领先的云计算平台,在
- Git入门与进阶:详细使用指南
向着开发进攻
gitgit
Git入门与进阶:详细使用指南Git是一款强大的分布式版本控制工具,广泛用于软件开发中的源代码管理。无论你是一个刚刚开始学习编程的新手,还是一个已经有经验的开发者,Git都是你日常工作中的必备工具。在这篇文章中,我将详细介绍Git的使用方法,帮助你从基础到进阶掌握Git。什么是Git?Git是一种分布式版本控制系统(VCS),它让多个开发者能够高效地协同开发,跟踪代码的历史版本,并且管理项目的不同
- (4)UART应用设计及仿真验证4 —— UART模块集成
少卿不在大理寺
数字IC设计从入门到实战uartIC设计verilogIC
四、模块集成1.UART模块集成这会儿你再来看这个uart模块构是不是就亲切了很多,归总一下TX和RX之后,我们发现整个的UART的模块输入输出都是定好了的。所以在结构上没有什么需要再分析和拆解了的。直接上代码:moduleuart(inputclk,inputrstn,inputrx,inputtx_data,inputtx_data_valid,outputtx,outputtx_ready,
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><