- pytorch实现单机多卡训练
*Major*
pytorch人工智能python
pytorch实现单机多卡训练fromtorch.nn.parallelimportDataParallel#单机多卡的分布式训练(数据并行)模型训练加速'''三构建模型'''model=build_model(CFG.backbone,CFG.num_classes,CFG.device)model.load_state_dict(torch.load("best_epoch.bin"))mod
- 目标检测-YOLOv4
wydxry
深度学习目标检测YOLO目标跟踪
YOLOv4介绍YOLOv4是YOLO系列的第四个版本,继承了YOLOv3的高效性,并通过大量优化和改进,在目标检测任务中实现了更高的精度和速度。相比YOLOv3,YOLOv4在框架设计、特征提取、训练策略等方面进行了全面升级。它在保持实时检测的同时,显著提升了检测性能,尤其在复杂场景中的表现尤为出色。相比YOLOv3的改进与优势改进的Backbone(CSPDarknet-53)YOLOv4使用
- Vue前端框架选型论证
2401_84434086
程序员前端框架vue.js前端
Model:负责保存应用数据,与后端数据进行同步Controller:负责业务逻辑,根据用户行为对Model数据进行修改View:负责视图展示,将model中的数据可视化出来。但是,但是前端MVC也存在一些严重的问题:model和view的数据交互,非常的混乱,而且维护起来非常麻烦。这就是灵活开发带来的后遗症。拿backbone举个例子,backbone将Model的set和on方法暴露出来,方便
- 2011705918
qq_28091803
iOS传感器应用开发最佳实践_PDF电子书下载带书签目录完整版http://pan.baidu.com/s/1dDtSP2LNode应用程序构建使用MongoDB和Backbone_PDF电子书下载带书签目录完整版http://pan.baidu.com/s/1c04KnNMPhoneGap移动应用开发手册_PDF电子书下载带书签目录完整版http://pan.baidu.com/s/1mgssE
- 云计算的PDF
qq2011705918
IT电子书pdf
iOS传感器应用开发最佳实践_PDF电子书下载带书签目录完整版http://pan.baidu.com/s/1dDtSP2LNode应用程序构建使用MongoDB和Backbone_PDF电子书下载带书签目录完整版http://pan.baidu.com/s/1c04KnNMPhoneGap移动应用开发手册_PDF电子书下载带书签目录完整版http://pan.baidu.com/s/1mgssE
- YOLOv9网络框架
小远披荆斩棘
YOLOv8v9v10等实验与论文总结YOLO
#YOLOv9#parametersnc:80#numberofclassesdepth_multiple:1.0#modeldepthmultiplewidth_multiple:1.0#layerchannelmultiple#activation:nn.LeakyReLU(0.1)#activation:nn.ReLU()#anchorsanchors:3#YOLOv9backbonebac
- MIT-BEVFusion系列八--onnx导出1 综述及相机网络导出
端木的AI探索屋
bevfusiononnx量化自动驾驶bevfusion
目录综述export-camera.py加载模型加载数据生成需要导出成onnx的模块Backbone模块VTransform模块生成onnx使用pytorch原生的伪量化计算方法导出camera.backbone.onnx导出camera.vtransform.onnx综述bevfusion的各个部分的实现有着鲜明的特点,并且相互独立,特别是考虑到后续部署的需要,这里将整个网络,分成多个部分,分别
- 挑战杯 YOLOv7 目标检测网络解读
laafeer
python
文章目录0前言1yolov7的整体结构2关键点-backbone关键点-head3训练4使用效果5最后0前言世界变化太快,YOLOv6还没用熟YOLOv7就来了,如果有同学的毕设项目想用上最新的技术,不妨看看学长的这篇文章,学长带大家简单的解读yolov7,目的是对yolov7有个基础的理解。从2015年的YOLOV1,2016年YOLOV2,2018年的YOLOV3,到2020年的YOLOV4、
- Transformer实战-系列教程17:DETR 源码解读4(Joiner类/PositionEmbeddingSine类/位置编码/backbone)
机器学习杨卓越
Transformer实战transformer深度学习人工智能计算机视觉pytorchDETR
Transformer实战-系列教程总目录有任何问题欢迎在下面留言本篇文章的代码运行界面均在Pycharm中进行本篇文章配套的代码资源已经上传点我下载源码DETR算法解读DETR源码解读1(项目配置/CocoDetection类)DETR源码解读2(ConvertCocoPolysToMask类)DETR源码解读3(DETR类)DETR源码解读4(Joiner类/PositionEmbedding
- MIT-BEVFusion系列七--量化2_Camera、Fuser、Decoder网络的量化
端木的AI探索屋
自动驾驶算法python人工智能网络
目录Camera量化CameraBackbone(Resnet50)量化替换量化层,增加residual_quantizer,修改bottleneck的前向对Add操作进行量化CameraNeck(GeneralizedLSSFPN)量化将Conv2d模块替换为QuantConv2d模块CameraNeck中添加对拼接操作的量化替换CameraNeck中的ForwardCameraVTransfo
- MIT-BEVFusion系列七--量化1_公共部分和激光雷达网络的量化
端木的AI探索屋
bevfusion自动驾驶算法python人工智能
目录官方readme的Notesptq.py量化模块初始化解析命令行参数加载配置信息创建dataset和dataloader构建模型模型量化Lidarbackbone量化稀疏卷积模块量化量化完的效果加法模块量化本文是Nvidia的英伟达发布的部署MIT-BEVFusion的方案官方readme的Notes这是是官方提到的量化时需要注意的三个方面:1)在模型进行前向时,使用融合BN层可以为模型带来更
- Unet 实战分割项目、多尺度训练、多类别分割
听风吹等浪起
图像分割深度学习人工智能机器学习
1.介绍之前写了篇二值图像分割的项目,支持多尺度训练,网络采用backbone为vgg的unet网络。缺点就是没法实现多类别的分割,具体可以参考:二值图像分割统一项目本章只对增加的代码进行介绍,其余的参考上述链接博文本章实现的unet网络的多类别分割,也就是分割可以是两个类别,也可以是多个类别。训练过程仍然采用多尺度训练,即网络会随机将图片缩放到设定尺寸的0.5-1.5倍之间文件目录如下:2.实现
- Unet+ResNet 实战分割项目、多尺度训练、多类别分割
听风吹等浪起
图像分割人工智能计算机视觉
1.介绍传统的Unet网络,特征提取的backbone采用的是vgg模型,vgg的相关介绍和实战参考以前的博文:pytorch搭建VGG网络VGG的特征提取能力其实是不弱的,但网络较为臃肿,容易产生梯度消失或者梯度爆炸的问题。而Resnet可以解决这一问题,参考:ResNet训练CIFAR10数据集,并做图片分类本章在之前文章的基础上,只是将Unet的backbone进行替换,将vgg换成了res
- LLM之LangChain(七)| 使用LangChain,LangSmith实现Prompt工程ToT
wshzd
LangChain笔记langchainprompt
如下图所示,LLM仍然是自治代理的backbone,可以通过给LLM增加以下模块来增强LLM功能:PrompterAgentCheckerModuleMemorymoduleToTcontroller当解决具体问题时,这些模块与LLM进行多轮对话。这是基于LLM的自治代理的典型情况,其中动态创建链并按顺序执行,同时多次轮询LLM。下图是LangSmith[1]的界面,从图中可以看到使用的token
- 大模型实践笔记(2)——Clip改进:通过文本检索视频帧
不会写代码!!
人工智能LLMPython学习深度学习大数据
目录超参数设置配置LLM-clip的backbone文本编码抽取视频帧并编码视频帧匹配保存结果帧工程流全是干货超参数设置#超参数设置PARAMS={"clip_model":"openai/clip-vit-base-patch32",#推理模型名称"video_folder":"./video_test",#视频文件夹路径"text_description":"Aphotoofapersonwe
- ODOO--OWL简介
姜振建 15954039008
odoojavascript前端前端框架
1.什么是OWLOWL是Odoo创建的前端开发框架。这是他们在最新版本的Odoo(版本14)中引入的一个框架,以使前端代码更好一些。如果您熟悉其他前端框架,如React、Vue、Angular、Backbone等,那么您将很快了解OWL。它遵循许多相同的模式和想法。如果您不熟悉前端框架的概念,那么最近的框架都围绕着消除过去通常使用javascript完成的琐碎事务性工作的想法展开。我相信您熟悉数百
- YOLOv8算法改进【NO.91】引入RCS-YOLO算法模块
人工智能算法研究院
首发创新改进方法YOLO算法改进系列YOLO算法transformer
前言YOLO算法改进系列出到这,很多朋友问改进如何选择是最佳的,下面我就根据个人多年的写作发文章以及指导发文章的经验来看,按照优先顺序进行排序讲解YOLO算法改进方法的顺序选择。具体有需求的同学可以私信我沟通:第一,创新主干特征提取网络,将整个Backbone改进为其他的网络,比如这篇文章中的整个方法,直接将Backbone替换掉,理由是这种改进如果有效果,那么改进点就很值得写,不算是堆积木那种,
- 深度学习知识点汇总-目标检测(1)
深度学习模型优化
8.1R-FCNR-FCN属于two-stage的目标检测算法。backbone部分RPN,这里使用ResNet。head部分R-FCN,使用全连接网络。其中ResNet-101+R-FCN的方法在PASCALVOC2007测试数据集的mmAP达到83.6%。图1人脸检测R-FCN的核心思想得到目标多个特征。假设我们只有一个特征图用来检测右眼。那么我们可以使用它定位人脸吗?应该可以。因为右眼应该在
- YOLOv8 : 网络结构
赛先生.AI
YOLOv8YOLO计算机视觉目标检测
一.YOLOv8网络结构1.BackboneYOLOv8的Backbone同样参考了CSPDarkNet-53网络,我们可以称之为CSPDarkNet结构吧,与YOLOv5不同的是,YOLOv8使用C2f(CSPLayer_2Conv)代替了C3模块(如果你比较熟悉YOLOv5的网络结构,那YOLOv8的网络结构理解起来就easy了)。如图1所示为YOLOv8网络结构图(引用自MMYOLO),对比
- 点云transformer算法: FlatFormer 论文阅读笔记
zhaoyqcsdn
深度学习transformer算法论文阅读
代码:https://github.com/mit-han-lab/flatformer论文:https://arxiv.org/abs/2301.08739[FlatFormer.pdf]Flatformer是对点云检测中的backbone3d部分的改进工作,主要在探究怎么高效的对点云应用transformer具体的工作如下:一个缩写:**PCTs即pointcloudtransformers*
- 最新模型VMamba:颠覆视觉Transformer,下一代主流Backbone?
深蓝学院
计算机视觉CNN
论文标题:VMamba:VisualStateSpaceModel论文作者:YueLiu,YunjieTian,YuzhongZhao,HongtianYu,LingxiXie,YaoweiWang,QixiangYe,YunfanLiu1.摘要卷积神经网络(CNN)与视觉Transformer(ViT)是目前最流行的两种视觉表征基础模型。CNN在线性复杂度下,具有惊人的可扩展性。ViTs在性能方
- Transformer实战-系列教程7:SwinTransformer 算法原理 1
机器学习杨卓越
Transformer实战人工智能深度学习Transformer计算机视觉图像分割swinTransformer
Transformer实战-系列教程总目录有任何问题欢迎在下面留言本篇文章的代码运行界面均在Pycharm中进行本篇文章配套的代码资源已经上传1、SwinTransformerSwinTransformer可以看作为一个backbone用来做分类、检测、分割都是非常好的也可以直接套用在下游任务中不仅源码公开了,预训练模型也公开了预训练模型提供大中小三个版本图像中的像素点太多了,如果需要更多的特征就
- 【DeepLearning-10】yolo.py文件关键代码parse_model(d, ch)函数
风筝超冷
YOLO
这段代码功能是根据提供的配置字典(d)和输入通道列表(ch)来解析并构建一个YOLOv5模型。函数的核心工作是遍历模型的每一层,并根据配置创建相应的神经网络层。我们可以在函数中为新增模块配置构造参数设置。函数中fori,(f,n,m,args)inenumerate(d['backbone']+d['head']):#from,number,module,args这一部分对应yolo.yaml文件
- YOLOv5白皮书-第Y3周:yolov5s.yaml文件解读
Prime's Blog
深度学习深度学习训练营YOLO
YOLOv5白皮书-第Y3周:yolov5s.yaml文件解读YOLOv5白皮书-第Y3周:yolov5s.yaml文件解读一、前言二、我的环境三、yolov5s.yaml源文件内容四、Parameters五、anchors配置六、backbone七、head八、总结OLOv5-第Y2周:训练自己的数据集)YOLOv5白皮书-第Y3周:yolov5s.yaml文件解读一、前言本文为365天深度学习
- 目标检测任务的调研与概述
Alexa2077
目标检测目标跟踪人工智能
目标检测任务的调研与概述0FQA1目标检测任务基本知识:1.1什么是目标检测?1.2目标检测的损失函数都有那些?1.2.1类别损失:1.2.2位置损失:1.3目标检测的评价指标都有那些?1.4目标检测有那些常见的数据集?2目标检测的进阶知识:2.1经典的backbone:2.2目标检测器-传统的检测方法2.3目标检测器-两阶段的检测方法:2.3.1R-CNN开山之作2.3.2SPP-Net2.3.
- 【计算机视觉 | 目标检测】DETR风格的目标检测框架解读
旅途中的宽~
目标检测经典论文导读计算机视觉开放域目标检测计算机视觉目标检测深度学习DETR
文章目录一、前言二、理解2.1DETR的理解2.2DETR的细致理解2.2.1Backbone2.2.2Transformerencoder2.2.3Transformerdecoder2.2.4Predictionfeed-forwardnetworks(FFNs)2.2.5Auxiliarydecodinglosses2.3更具体的结构2.4编码器的原理和作用2.5解码器的原理和作用三、注意力
- CS455 Computer Communications and Networking
zhuyu0206girl
网络
Answerthefollowingquestions[100pt]1.[18pt]Thefollowingfigureshows7interconnectedASes:A,B,C,V,W,XandY.ASA,BandCareprovidednetworks(e.g.,backboneASes)andV,W,XandYaretheircustomernetworks(e.g.,accessnetw
- 简单了解YOLOv8
望外追晚
YOLO
简单介绍YOLOv8这里主要关注模型的backbone和后处理的过程,并通过对比YOLOv5的架构来更深入的了解YOLOv8。模型框架YOLOv5中的C3替换为更精简的C2f,即增加了更多的跳跃连接和split操作;Backbone中C2f的block数从3-6-9-3改成了3-6-6-3;耦合头变成了解耦头,分类和回归分为两个分支分别进行;数据前处理1、letterbox缩放:yolov8的输入
- 《RT-DETR魔术师》专栏介绍 & CSDN独家改进创新实战 & 专栏目录
AI小怪兽
RT-DETR魔术师人工智能计算机视觉算法pytorch开发语言python深度学习
RT-DETR魔术师专栏介绍:https://blog.csdn.net/m0_63774211/category_12497375.html✨✨✨魔改创新RT-DETR引入前沿顶会创新(CVPR2023,ICCV2023等),助力RT-DETR基于ultralytics优化,与YOLO完美结合重点:通过本专栏的阅读,后续你也可以自己魔改网络,在网络不同位置(Backbone、head、detec
- 《YOLO小目标检测》专栏介绍 & CSDN独家改进创新实战&专栏目录
AI小怪兽
YOLO小目标检测目标跟踪算法人工智能目标检测YOLO深度学习计算机视觉
Yolo小目标检测,独家首发创新(原创),适用于Yolov5、Yolov7、Yolov8等各个Yolo系列,专栏文章提供每一步步骤和源码,带你轻松实现小目标检测涨点重点:通过本专栏的阅读,后续你可以结合自己的小目标检测数据集,在网络不同位置(Backbone、head、detect、loss等)进行魔改,实现小目标涨点和创新!!!专栏介绍:✨✨✨解决小目标检测难点并提升小目标检测性能;小目标、遮挡
- Spring4.1新特性——综述
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Schema与数据类型优化
annan211
数据结构mysql
目前商城的数据库设计真是一塌糊涂,表堆叠让人不忍直视,无脑的架构师,说了也不听。
在数据库设计之初,就应该仔细揣摩可能会有哪些查询,有没有更复杂的查询,而不是仅仅突出
很表面的业务需求,这样做会让你的数据库性能成倍提高,当然,丑陋的架构师是不会这样去考虑问题的。
选择优化的数据类型
1 更小的通常更好
更小的数据类型通常更快,因为他们占用更少的磁盘、内存和cpu缓存,
- 第一节 HTML概要学习
chenke
htmlWebcss
第一节 HTML概要学习
1. 什么是HTML
HTML是英文Hyper Text Mark-up Language(超文本标记语言)的缩写,它规定了自己的语法规则,用来表示比“文本”更丰富的意义,比如图片,表格,链接等。浏览器(IE,FireFox等)软件知道HTML语言的语法,可以用来查看HTML文档。目前互联网上的绝大部分网页都是使用HTML编写的。
打开记事本 输入一下内
- MyEclipse里部分习惯的更改
Array_06
eclipse
继续补充中----------------------
1.更改自己合适快捷键windows-->prefences-->java-->editor-->Content Assist-->
Activation triggers for java的右侧“.”就可以改变常用的快捷键
选中 Text
- 近一个月的面试总结
cugfy
面试
本文是在学习中的总结,欢迎转载但请注明出处:http://blog.csdn.net/pistolove/article/details/46753275
前言
打算换个工作,近一个月面试了不少的公司,下面将一些面试经验和思考分享给大家。另外校招也快要开始了,为在校的学生提供一些经验供参考,希望都能找到满意的工作。 
- HTML5一个小迷宫游戏
357029540
html5
通过《HTML5游戏开发》摘抄了一个小迷宫游戏,感觉还不错,可以画画,写字,把摘抄的代码放上来分享下,喜欢的同学可以拿来玩玩!
<html>
<head>
<title>创建运行迷宫</title>
<script type="text/javascript"
- 10步教你上传githib数据
张亚雄
git
官方的教学还有其他博客里教的都是给懂的人说得,对已我们这样对我大菜鸟只能这么来锻炼,下面先不玩什么深奥的,先暂时用着10步干净利索。等玩顺溜了再用其他的方法。
操作过程(查看本目录下有哪些文件NO.1)ls
(跳转到子目录NO.2)cd+空格+目录
(继续NO.3)ls
(匹配到子目录NO.4)cd+ 目录首写字母+tab键+(首写字母“直到你所用文件根就不再按TAB键了”)
(查看文件
- MongoDB常用操作命令大全
adminjun
mongodb操作命令
成功启动MongoDB后,再打开一个命令行窗口输入mongo,就可以进行数据库的一些操作。输入help可以看到基本操作命令,只是MongoDB没有创建数据库的命令,但有类似的命令 如:如果你想创建一个“myTest”的数据库,先运行use myTest命令,之后就做一些操作(如:db.createCollection('user')),这样就可以创建一个名叫“myTest”的数据库。
一
- bat调用jar包并传入多个参数
aijuans
下面的主程序是通过eclipse写的:
1.在Main函数接收bat文件传递的参数(String[] args)
如: String ip =args[0]; String user=args[1]; &nbs
- Java中对类的主动引用和被动引用
ayaoxinchao
java主动引用对类的引用被动引用类初始化
在Java代码中,有些类看上去初始化了,但其实没有。例如定义一定长度某一类型的数组,看上去数组中所有的元素已经被初始化,实际上一个都没有。对于类的初始化,虚拟机规范严格规定了只有对该类进行主动引用时,才会触发。而除此之外的所有引用方式称之为对类的被动引用,不会触发类的初始化。虚拟机规范严格地规定了有且仅有四种情况是对类的主动引用,即必须立即对类进行初始化。四种情况如下:1.遇到ne
- 导出数据库 提示 outfile disabled
BigBird2012
mysql
在windows控制台下,登陆mysql,备份数据库:
mysql>mysqldump -u root -p test test > D:\test.sql
使用命令 mysqldump 格式如下: mysqldump -u root -p *** DBNAME > E:\\test.sql。
注意:执行该命令的时候不要进入mysql的控制台再使用,这样会报
- Javascript 中的 && 和 ||
bijian1013
JavaScript&&||
准备两个对象用于下面的讨论
var alice = {
name: "alice",
toString: function () {
return this.name;
}
}
var smith = {
name: "smith",
- [Zookeeper学习笔记之四]Zookeeper Client Library会话重建
bit1129
zookeeper
为了说明问题,先来看个简单的示例代码:
package com.tom.zookeeper.book;
import com.tom.Host;
import org.apache.zookeeper.WatchedEvent;
import org.apache.zookeeper.ZooKeeper;
import org.apache.zookeeper.Wat
- 【Scala十一】Scala核心五:case模式匹配
bit1129
scala
package spark.examples.scala.grammars.caseclasses
object CaseClass_Test00 {
def simpleMatch(arg: Any) = arg match {
case v: Int => "This is an Int"
case v: (Int, String)
- 运维的一些面试题
yuxianhua
linux
1、Linux挂载Winodws共享文件夹
mount -t cifs //1.1.1.254/ok /var/tmp/share/ -o username=administrator,password=yourpass
或
mount -t cifs -o username=xxx,password=xxxx //1.1.1.1/a /win
- Java lang包-Boolean
BrokenDreams
boolean
Boolean类是Java中基本类型boolean的包装类。这个类比较简单,直接看源代码吧。
public final class Boolean implements java.io.Serializable,
- 读《研磨设计模式》-代码笔记-命令模式-Command
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
/**
* GOF 在《设计模式》一书中阐述命令模式的意图:“将一个请求封装
- matlab下GPU编程笔记
cherishLC
matlab
不多说,直接上代码
gpuDevice % 查看系统中的gpu,,其中的DeviceSupported会给出matlab支持的GPU个数。
g=gpuDevice(1); %会清空 GPU 1中的所有数据,,将GPU1 设为当前GPU
reset(g) %也可以清空GPU中数据。
a=1;
a=gpuArray(a); %将a从CPU移到GPU中
onGP
- SVN安装过程
crabdave
SVN
SVN安装过程
subversion-1.6.12
./configure --prefix=/usr/local/subversion --with-apxs=/usr/local/apache2/bin/apxs --with-apr=/usr/local/apr --with-apr-util=/usr/local/apr --with-openssl=/
- sql 行列转换
daizj
sql行列转换行转列列转行
行转列的思想是通过case when 来实现
列转行的思想是通过union all 来实现
下面具体例子:
假设有张学生成绩表(tb)如下:
Name Subject Result
张三 语文 74
张三 数学 83
张三 物理 93
李四 语文 74
李四 数学 84
李四 物理 94
*/
/*
想变成
姓名 &
- MySQL--主从配置
dcj3sjt126com
mysql
linux下的mysql主从配置: 说明:由于MySQL不同版本之间的(二进制日志)binlog格式可能会不一样,因此最好的搭配组合是Master的MySQL版本和Slave的版本相同或者更低, Master的版本肯定不能高于Slave版本。(版本向下兼容)
mysql1 : 192.168.100.1 //master mysq
- 关于yii 数据库添加新字段之后model类的修改
dcj3sjt126com
Model
rules:
array('新字段','safe','on'=>'search')
1、array('新字段', 'safe')//这个如果是要用户输入的话,要加一下,
2、array('新字段', 'numerical'),//如果是数字的话
3、array('新字段', 'length', 'max'=>100),//如果是文本
1、2、3适当的最少要加一条,新字段才会被
- sublime text3 中文乱码解决
dyy_gusi
Sublime Text
sublime text3中文乱码解决
原因:缺少转换为UTF-8的插件
目的:安装ConvertToUTF8插件包
第一步:安装能自动安装插件的插件,百度“Codecs33”,然后按照步骤可以得到以下一段代码:
import urllib.request,os,hashlib; h = 'eb2297e1a458f27d836c04bb0cbaf282' + 'd0e7a30980927
- 概念了解:CGI,FastCGI,PHP-CGI与PHP-FPM
geeksun
PHP
CGI
CGI全称是“公共网关接口”(Common Gateway Interface),HTTP服务器与你的或其它机器上的程序进行“交谈”的一种工具,其程序须运行在网络服务器上。
CGI可以用任何一种语言编写,只要这种语言具有标准输入、输出和环境变量。如php,perl,tcl等。 FastCGI
FastCGI像是一个常驻(long-live)型的CGI,它可以一直执行着,只要激活后,不
- Git push 报错 "error: failed to push some refs to " 解决
hongtoushizi
git
Git push 报错 "error: failed to push some refs to " .
此问题出现的原因是:由于远程仓库中代码版本与本地不一致冲突导致的。
由于我在第一次git pull --rebase 代码后,准备push的时候,有别人往线上又提交了代码。所以出现此问题。
解决方案:
1: git pull
2:
- 第四章 Lua模块开发
jinnianshilongnian
nginxlua
在实际开发中,不可能把所有代码写到一个大而全的lua文件中,需要进行分模块开发;而且模块化是高性能Lua应用的关键。使用require第一次导入模块后,所有Nginx 进程全局共享模块的数据和代码,每个Worker进程需要时会得到此模块的一个副本(Copy-On-Write),即模块可以认为是每Worker进程共享而不是每Nginx Server共享;另外注意之前我们使用init_by_lua中初
- java.lang.reflect.Proxy
liyonghui160com
1.简介
Proxy 提供用于创建动态代理类和实例的静态方法
(1)动态代理类的属性
代理类是公共的、最终的,而不是抽象的
未指定代理类的非限定名称。但是,以字符串 "$Proxy" 开头的类名空间应该为代理类保留
代理类扩展 java.lang.reflect.Proxy
代理类会按同一顺序准确地实现其创建时指定的接口
- Java中getResourceAsStream的用法
pda158
java
1.Java中的getResourceAsStream有以下几种: 1. Class.getResourceAsStream(String path) : path 不以’/'开头时默认是从此类所在的包下取资源,以’/'开头则是从ClassPath根下获取。其只是通过path构造一个绝对路径,最终还是由ClassLoader获取资源。 2. Class.getClassLoader.get
- spring 包官方下载地址(非maven)
sinnk
spring
SPRING官方网站改版后,建议都是通过 Maven和Gradle下载,对不使用Maven和Gradle开发项目的,下载就非常麻烦,下给出Spring Framework jar官方直接下载路径:
http://repo.springsource.org/libs-release-local/org/springframework/spring/
s
- Oracle学习笔记(7) 开发PLSQL子程序和包
vipbooks
oraclesql编程
哈哈,清明节放假回去了一下,真是太好了,回家的感觉真好啊!现在又开始出差之旅了,又好久没有来了,今天继续Oracle的学习!
这是第七章的学习笔记,学习完第六章的动态SQL之后,开始要学习子程序和包的使用了……,希望大家能多给俺一些支持啊!
编程时使用的工具是PLSQL