下面介绍Manacher算法的原理与步骤。
首先,Manacher算法提供了一种巧妙地办法,将长度为奇数的回文串和长度为偶数的回文串一起考虑,具体做法是,在原字符串的每个相邻两个字符中间插入一个分隔符,同时在首尾也要添加一个分隔符,分隔符的要求是不在原串中出现,一般情况下可以用#号。下面举一个例子:
Manacher算法用一个辅助数组Len[i]表示以字符T[i]为中心的最长回文字串的最右字符到T[i]的长度,比如以T[i]为中心的最长回文字串是T[l,r],那么Len[i]=r-i+1。
对于上面的例子,可以得出Len[i]数组为:
Len 数组有一个性质,那就是Len[i]-1就是该回文子串在原字符串S中的长度,至于证明,首先在转换得到的字符串T中,所有的回文字串的长度都为奇数,那 么对于以T[i]为中心的最长回文字串,其长度就为2*Len[i]-1,经过观察可知,T中所有的回文子串,其中分隔符的数量一定比其他字符的数量多 1,也就是有Len[i]个分隔符,剩下Len[i]-1个字符来自原字符串,所以该回文串在原字符串中的长度就为Len[i]-1。
有了这个性质,那么原问题就转化为求所有的Len[i]。下面介绍如何在线性时间复杂度内求出所有的Len。
首先从左往右依次计算Len[i],当计算Len[i]时,Len[j](0<=j<i)已经计算完毕。设P为之前计算中最长回文子串的右端点的最大值,并且设取得这个最大值的位置为po,分两种情况:
第一种情况:i<=P
那么找到i相对于po的对称位置,设为j,那么如果Len[j]<P-i,如下图:
那 么说明以j为中心的回文串一定在以po为中心的回文串的内部,且j和i关于位置po对称,由回文串的定义可知,一个回文串反过来还是一个回文串,所以以i 为中心的回文串的长度至少和以j为中心的回文串一样,即Len[i]>=Len[j]。因为Len[j]<P-i,所以说i+Len[j]& lt;P。由对称性可知Len[i]=Len[j]。
如果Len[j]>=P-i,由对称性,说明以i为中心的回文串可能会延伸到P之外,而大于P的部分我们还没有进行匹配,所以要从P+1位置开始一个一个进行匹配,直到发生失配,从而更新P和对应的po以及Len[i]。
第二种情况: i>P
如果i比P还要大,说明对于中点为i的回文串还一点都没有匹配,这个时候,就只能老老实实地一个一个匹配了,匹配完成后要更新P的位置和对应的po以及Len[i]。
Manacher 算法的时间复杂度分析和Z算法类似,因为算法只有遇到还没有匹配的位置时才进行匹配,已经匹配过的位置不再进行匹配,所以对于T字符串中的每一个位置,只 进行一次匹配,所以Manacher算法的总体时间复杂度为O(n),其中n为T字符串的长度,由于T的长度事实上是S的两倍,所以时间复杂度依然是线性 的。
下面是算法的实现,注意,为了避免更新P的时候导致越界,我们在字符串T的前增加一个特殊字符,比如说‘$’,所以算法中字符串是从1开始的。
const int maxn=1000010; char str[maxn];//原字符串 char tmp[maxn<<1];//转换后的字符串 int Len[maxn<<1]; //转换原始串 int INIT(char *st) { int i,len=strlen(st); tmp[0]='@';//字符串开头增加一个特殊字符,防止越界 for(i=1;i<=2*len;i+=2) { tmp[i]='#'; tmp[i+1]=st[i/2]; } tmp[2*len+1]='#'; tmp[2*len+2]='$';//字符串结尾加一个字符,防止越界 tmp[2*len+3]=0; return 2*len+1;//返回转换字符串的长度 } //Manacher算法计算过程 int MANACHER(char *st,int len) { int mx=0,ans=0,po=0;//mx即为当前计算回文串最右边字符的最大值 for(int i=1;i<=len;i++) { if(mx>i) Len[i]=min(mx-i,Len[2*po-i]);//在Len[j]和mx-i中取个小 else Len[i]=1;//如果i>=mx,要从头开始匹配 while(st[i-Len[i]]==st[i+Len[i]]) Len[i]++; if(Len[i]+i>mx)//若新计算的回文串右端点位置大于mx,要更新po和mx的值 { mx=Len[i]+i; po=i; } ans=max(ans,Len[i]); } return ans-1;//返回Len[i]中的最大值-1即为原串的最长回文子串额长度 }