最小二乘曲线拟合算法的C++实现

头文件:

/*
 * Copyright (c) 2008-2011 Zhang Ming (M. Zhang), [email protected]
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation, either version 2 or any later version.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
 * more details. A copy of the GNU General Public License is available at:
 * http://www.fsf.org/licensing/licenses
 */


/*****************************************************************************
 *                               fitcurves.h
 *
 * Fitted functions for least square fitting.
 *
 * Zhang Ming, 2010-04, Xi'an Jiaotong University.
 *****************************************************************************/


#ifndef FITCURVES_H
#define FITCURVES_H


#include <iostream>
#include <constants.h>


namespace splab
{

    template <typename Type>
    class Funcs
    {

    public:

        const static int dim = 4;

        // Compute the value of functions at point x.
        Type operator()( int i, const Type &x )
        {
            switch( i )
            {
                case 1:
                {
                    return 1;
                    break;
                }
                case 2:
                {
                    return log(max(x,EPS));
                    break;
                }
                case 3:
                {
                    return x;
                    break;
                }
                case 4:
                {
                    return x*x;
                    break;
                }
                default:
                {
                    std::cerr << "The dimension 'i' exceed the bound!"
                              << std::endl;
                    return 0;
                    break;
                }
            }
        }

    };
    // class ObjFunc

}
// namespace splab


#endif
// FITCURVES_H
/*
 * Copyright (c) 2008-2011 Zhang Ming (M. Zhang), [email protected]
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation, either version 2 or any later version.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
 * more details. A copy of the GNU General Public License is available at:
 * http://www.fsf.org/licensing/licenses
 */


/*****************************************************************************
 *                                lsfitting.h
 *
 * Least Square Fitting.
 *
 * For a given points set "Pn" {xn,yn} and a fitted function with paramter
 * "pm", this class can find the best parameter "pm" in the meaning of least
 * mean-square error.
 *
 * Zhang Ming, 2010-04, Xi'an Jiaotong University.
 *****************************************************************************/


#ifndef LSFITTING_H
#define LSFITTING_H


#include <matrix.h>
#include <linequs1.h>
#include <fitcurves.h>
#include <interpolation.h>


namespace splab
{

    template <typename Type>
    class LSFitting : public Interpolation<Type>
    {

     public:

        using Interpolation<Type>::xi;
        using Interpolation<Type>::yi;

        LSFitting( const Vector<Type> &xn, const Vector<Type> &yn,
                   Funcs<Type> &f );
        ~LSFitting();

        void calcCoefs();
        Type evaluate( Type x );
        Vector<Type> getCoefs() const;

    private:

        Vector<Type> coefs;     // fitted parameters
        Funcs<Type>  phi;       // fitted functions

    };
    // class LSFitting


    #include <lsfitting-impl.h>

}
// namespace splab


#endif
// LSFITTING_H

实现文件:

/*
 * Copyright (c) 2008-2011 Zhang Ming (M. Zhang), [email protected]
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation, either version 2 or any later version.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
 * more details. A copy of the GNU General Public License is available at:
 * http://www.fsf.org/licensing/licenses
 */


/*****************************************************************************
 *                               lsfitting-impl.h
 *
 * Implementation for LSFitting class.
 *
 * Zhang Ming, 2010-04, Xi'an Jiaotong University.
 *****************************************************************************/


/**
 * constructors and destructor
 */
template <typename Type>
LSFitting<Type>::LSFitting( const Vector<Type> &xn, const Vector<Type> &yn,
                            Funcs<Type> &f )
                 : Interpolation<Type>( xn, yn ), phi(f)
{
    coefs.resize(phi.dim);
}

template <typename Type>
LSFitting<Type>::~LSFitting()
{
}


/**
 * Compute fitted parameters.
 */
template <typename Type>
void LSFitting<Type>::calcCoefs()
{
    int N = xi.size(),
        M = coefs.dim();

    Type tmp;
    Vector<Type> b(M);
    Matrix<Type> C( M, M );

	for( int i=1; i<=M; ++i )
	{
	    tmp = 0;
	    for( int k=0; k<N; ++k )
            tmp += phi(i,xi[k]) * phi(i,xi[k]);
        C(i,i) = tmp;

	    for( int j=i+1; j<=M; ++j )
	    {
	        tmp = 0;
	        for( int k=0; k<N; ++k )
                tmp += phi(i,xi[k]) * phi(j,xi[k]);
            C(i,j) = C(j,i) = tmp;
	    }

	    tmp = 0;
	    for( int k=0; k<N; ++k )
            tmp += phi(i,xi[k]) * yi[k];
        b(i) = tmp;
	}

    coefs = choleskySolver( C, b );
}


/**
 * Compute the value of fitted function at given "x".
 */
template <typename Type>
Type LSFitting<Type>::evaluate( Type x )
{
	Type y = 0;
	for( int j=0; j<coefs.size(); ++j )
		y += coefs[j] * phi( j, x );

	return y;
}


/**
 * Get the fitted parameters.
 */
template <typename Type>
inline Vector<Type> LSFitting<Type>::getCoefs() const
{
	return coefs;
}

测试代码:

/*****************************************************************************
 *                               lsfit_test.cpp
 *
 * Least square fitting testing.
 *
 * Zhang Ming, 2010-04, Xi'an Jiaotong University.
 *****************************************************************************/


#define BOUNDS_CHECK

#include <iostream>
#include <lsfitting.h>


using namespace std;
using namespace splab;


typedef double  Type;


int main()
{
    Type    A = 4.0,
            alpha = 1.0,
            beta = -2.0,
            gamma = -4.0,
            tmp = 0.0;

    int M = 100;
    Vector<Type> x = linspace( 0.01, 0.5*PI, M );
    Vector<Type> y(M);
    for( int i=0; i<M; ++i )
    {
        tmp = A * pow(x[i],alpha) * exp(beta*x[i]+gamma*x[i]*x[i]);
        y[i] = log(max(tmp,EPS));
    }

    Funcs<Type> phi;
    LSFitting<Type> lsf( x, y, phi );
    lsf.calcCoefs();
    Vector<Type> parms = lsf.getCoefs();
    parms(1) = exp(parms(1));

    cout << "The original parameters are:" << endl
         << A << endl << alpha << endl << beta << endl << gamma << endl << endl;
    cout << "The fitted parameters are:   "  << parms << endl;

    return 0;
}

运行结果:

The original parameters are:
4
1
-2
-4

The fitted parameters are:   size: 4 by 1
4
1
-2
-4


Process returned 0 (0x0)   execution time : 0.094 s
Press any key to continue.

你可能感兴趣的:(最小二乘曲线拟合算法的C++实现)