2的整次幂长度FFT算法的C++实现

头文件:

/*
 * Copyright (c) 2008-2011 Zhang Ming (M. Zhang), [email protected]
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation, either version 2 or any later version.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
 * more details. A copy of the GNU General Public License is available at:
 * http://www.fsf.org/licensing/licenses
 */


/*****************************************************************************
 *                                fftmr.h
 *
 * Fast Fourier Transform with Mixed Radix Algorithm
 *
 * This class is designed for calculating discrete Fourier transform and
 * inverse discrete Fourier transform of 1D signals by using Mixed-Radix
 * Algorithms. The length of signals should equal to powers of 2.
 *
 * The algorithm is modified from "kube-gustavson-fft.c". Which is a pretty
 * fast FFT algorithm. Not super-optimized lightning-fast, but very good
 * considering its age and relative simplicity.
 *
 * Zhang Ming, 2010-04, Xi'an Jiaotong University.
 *****************************************************************************/


#ifndef FFTMR_H
#define FFTMR_H


#include <vector.h>


namespace splab
{

    /**
     * complex node converted from "C" version for this algorithm
     */
    template<typename Type>
    struct Complex
    {
        Type re;
        Type im;
    };


    /**
     * two routines frequently used in FFT algorithm
     */
    bool    isPower2( int );
    int     fastLog2( int );


    /**
     * Radix based FFT class
     */
	template<typename Type>
	class FFTMR
	{

	public:

		FFTMR();
		~FFTMR();

        void fft( Vector< complex<Type> > &xn );
        void ifft( Vector< complex<Type> > &Xk );
		void fft( const Vector<Type> &xn, Vector< complex<Type> > &Xk );
        void ifft( const Vector< complex<Type> > &Xk, Vector<Type> &xn );

	private:

        void bitReverse( Vector<int> &bitrev );
		void radix2( int nthpo, Complex<Type> *c0, Complex<Type> *c1 );
		void radix4( int nthpo, Complex<Type> *c0, Complex<Type> *c1,
                           Complex<Type> *c2, Complex<Type> *c3 );
		void radix8( int nxtlt, int nthpo, int length,
                     Complex<Type> *cc0, Complex<Type> *cc1,
                     Complex<Type> *cc2, Complex<Type> *cc3,
                     Complex<Type> *cc4, Complex<Type> *cc5,
                     Complex<Type> *cc6, Complex<Type> *cc7 );
		void dft( int direction, int n, Complex<Type> *b );
	};
	//	class FFTMR


	#include <fftmr-impl.h>

}
// namespace splab


#endif
// FFTMR_H

实现文件:

/*
 * Copyright (c) 2008-2011 Zhang Ming (M. Zhang), [email protected]
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the
 * Free Software Foundation, either version 2 or any later version.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
 * more details. A copy of the GNU General Public License is available at:
 * http://www.fsf.org/licensing/licenses
 */


/*****************************************************************************
 *                               fftmr-impl.h
 *
 * Implementation for FFTMR class.
 *
 * Zhang Ming, 2010-04, Xi'an Jiaotong University.
 *****************************************************************************/


/**
 * To determine the input integer is or isn't the power of positive
 * integer of 2. If it is, return true, or return false.
 */
bool isPower2( int n )
{
    int bits = 0;
    while( n )
    {
        bits += n & 1;
        n >>= 1;
    }

    return ( bits == 1 );
}


/**
 * Get binary log of integer argument -- exact if n is a power of 2.
 */
int fastLog2( int n )
{
    int log = -1;
    while( n )
    {
        log++;
        n >>= 1;
    }

    return log;
}


/**
 * constructors and destructor
 */
template<typename Type>
FFTMR<Type>::FFTMR()
{
}

template<typename Type>
FFTMR<Type>::~FFTMR()
{
}


/**
 * Generate the bit reversed array.
 */
template<typename Type>
void FFTMR<Type>::bitReverse( Vector<int> &bitrev )
{
    int i, j;
	bitrev[0] = 0;

	for( j=1; j<bitrev.size(); j<<=1 )
		for( i=0; i<j; ++i )
		{
			bitrev[i] <<= 1;
			bitrev[i+j] = bitrev[i]+1;
		}
}


/**
 * Radix-2 iteration subroutine.
 */
template<typename Type>
void FFTMR<Type>::radix2( int nthpo, Complex<Type> *c0, Complex<Type> *c1 )
{
    int     k, kk;
    Type    *cr0, *ci0, *cr1, *ci1, r1, fi1;

    cr0 = &(c0[0].re);
    ci0 = &(c0[0].im);
    cr1 = &(c1[0].re);
    ci1 = &(c1[0].im);

    for( k=0; k<nthpo; k+=2 )
    {
        kk = k*2;

        r1 = cr0[kk] + cr1[kk];
        cr1[kk] = cr0[kk] - cr1[kk];
        cr0[kk] = r1;
        fi1 = ci0[kk] + ci1[kk];
        ci1[kk] = ci0[kk] - ci1[kk];
        ci0[kk] = fi1;
    }
}


/**
 * Radix-4 iteration subroutine.
 */
template<typename Type>
void FFTMR<Type>::radix4( int nthpo, Complex<Type> *c0, Complex<Type> *c1,
                          Complex<Type> *c2, Complex<Type> *c3 )
{
    int     k, kk;
    Type    *cr0, *ci0, *cr1, *ci1, *cr2, *ci2, *cr3, *ci3;
    Type    r1, r2, r3, r4, i1, i2, i3, i4;

    cr0 = &(c0[0].re);
    cr1 = &(c1[0].re);
    cr2 = &(c2[0].re);
    cr3 = &(c3[0].re);
    ci0 = &(c0[0].im);
    ci1 = &(c1[0].im);
    ci2 = &(c2[0].im);
    ci3 = &(c3[0].im);

    for( k=1; k<=nthpo; k+=4 )
    {
        kk = (k-1)*2;

        r1 = cr0[kk] + cr2[kk];
        r2 = cr0[kk] - cr2[kk];
        r3 = cr1[kk] + cr3[kk];
        r4 = cr1[kk] - cr3[kk];
        i1 = ci0[kk] + ci2[kk];
        i2 = ci0[kk] - ci2[kk];
        i3 = ci1[kk] + ci3[kk];
        i4 = ci1[kk] - ci3[kk];
        cr0[kk] = r1 + r3;
        ci0[kk] = i1 + i3;
        cr1[kk] = r1 - r3;
        ci1[kk] = i1 - i3;
        cr2[kk] = r2 - i4;
        ci2[kk] = i2 + r4;
        cr3[kk] = r2 + i4;
        ci3[kk] = i2 - r4;
    }
}


/**
 * Radix-8 iteration subroutine.
 */
template<typename Type>
void FFTMR<Type>::radix8( int nxtlt, int nthpo, int length,
                          Complex<Type> *cc0, Complex<Type> *cc1,
                          Complex<Type> *cc2, Complex<Type> *cc3,
                          Complex<Type> *cc4, Complex<Type> *cc5,
                          Complex<Type> *cc6, Complex<Type> *cc7 )
{
    int     j, k, kk;
    Type    scale, arg, tr, ti;

    Type    c1, c2, c3, c4, c5, c6, c7,
            s1, s2, s3, s4, s5, s6, s7;
    Type    ar0, ar1, ar2, ar3, ar4, ar5, ar6, ar7,
            ai0, ai1, ai2, ai3, ai4, ai5, ai6, ai7;
    Type    br0, br1, br2, br3, br4, br5, br6, br7,
            bi0, bi1, bi2, bi3, bi4, bi5, bi6, bi7;

    Type    *cr0, *cr1, *cr2, *cr3, *cr4, *cr5, *cr6, *cr7;
    Type    *ci0, *ci1, *ci2, *ci3, *ci4, *ci5, *ci6, *ci7;

    cr0 = &(cc0[0].re);
    cr1 = &(cc1[0].re);
    cr2 = &(cc2[0].re);
    cr3 = &(cc3[0].re);
    cr4 = &(cc4[0].re);
    cr5 = &(cc5[0].re);
    cr6 = &(cc6[0].re);
    cr7 = &(cc7[0].re);

    ci0 = &(cc0[0].im);
    ci1 = &(cc1[0].im);
    ci2 = &(cc2[0].im);
    ci3 = &(cc3[0].im);
    ci4 = &(cc4[0].im);
    ci5 = &(cc5[0].im);
    ci6 = &(cc6[0].im);
    ci7 = &(cc7[0].im);

    scale = Type(TWOPI/length);

    for( j=1; j<=nxtlt; j++ )
    {
        arg = (j-1)*scale;
        c1 = cos(arg);
        s1 = sin(arg);
        c2 = c1*c1 - s1*s1;
        s2 = c1*s1 + c1*s1;
        c3 = c1*c2 - s1*s2;
        s3 = c2*s1 + s2*c1;
        c4 = c2*c2 - s2*s2;
        s4 = c2*s2 + c2*s2;
        c5 = c2*c3 - s2*s3;
        s5 = c3*s2 + s3*c2;
        c6 = c3*c3 - s3*s3;
        s6 = c3*s3 + c3*s3;
        c7 = c3*c4 - s3*s4;
        s7 = c4*s3 + s4*c3;

        for( k=j; k<=nthpo; k+=length )
      	{
            kk = (k-1)*2; /* index by twos; re & im alternate */

            ar0 = cr0[kk] + cr4[kk];
            ar1 = cr1[kk] + cr5[kk];
            ar2 = cr2[kk] + cr6[kk];
            ar3 = cr3[kk] + cr7[kk];
            ar4 = cr0[kk] - cr4[kk];
            ar5 = cr1[kk] - cr5[kk];
            ar6 = cr2[kk] - cr6[kk];
            ar7 = cr3[kk] - cr7[kk];
            ai0 = ci0[kk] + ci4[kk];
            ai1 = ci1[kk] + ci5[kk];
            ai2 = ci2[kk] + ci6[kk];
            ai3 = ci3[kk] + ci7[kk];
            ai4 = ci0[kk] - ci4[kk];
            ai5 = ci1[kk] - ci5[kk];
            ai6 = ci2[kk] - ci6[kk];
            ai7 = ci3[kk] - ci7[kk];
            br0 = ar0 + ar2;
            br1 = ar1 + ar3;
            br2 = ar0 - ar2;
            br3 = ar1 - ar3;
            br4 = ar4 - ai6;
            br5 = ar5 - ai7;
            br6 = ar4 + ai6;
            br7 = ar5 + ai7;
            bi0 = ai0 + ai2;
            bi1 = ai1 + ai3;
            bi2 = ai0 - ai2;
            bi3 = ai1 - ai3;
            bi4 = ai4 + ar6;
            bi5 = ai5 + ar7;
            bi6 = ai4 - ar6;
            bi7 = ai5 - ar7;
            cr0[kk] = br0 + br1;
            ci0[kk] = bi0 + bi1;

            if( j > 1 )
      	    {
                cr1[kk] = c4*(br0-br1) - s4*(bi0-bi1);
                cr2[kk] = c2*(br2-bi3) - s2*(bi2+br3);
                cr3[kk] = c6*(br2+bi3) - s6*(bi2-br3);
                ci1[kk] = c4*(bi0-bi1) + s4*(br0-br1);
                ci2[kk] = c2*(bi2+br3) + s2*(br2-bi3);
                ci3[kk] = c6*(bi2-br3) + s6*(br2+bi3);
                tr = Type(IRT2)*(br5-bi5);
                ti = Type(IRT2)*(br5+bi5);
                cr4[kk] = c1*(br4+tr) - s1*(bi4+ti);
                ci4[kk] = c1*(bi4+ti) + s1*(br4+tr);
                cr5[kk] = c5*(br4-tr) - s5*(bi4-ti);
                ci5[kk] = c5*(bi4-ti) + s5*(br4-tr);
                tr = -Type(IRT2)*(br7+bi7);
                ti = Type(IRT2)*(br7-bi7);
                cr6[kk] = c3*(br6+tr) - s3*(bi6+ti);
                ci6[kk] = c3*(bi6+ti) + s3*(br6+tr);
                cr7[kk] = c7*(br6-tr) - s7*(bi6-ti);
                ci7[kk] = c7*(bi6-ti) + s7*(br6-tr);
      	    }
            else
      	    {
                cr1[kk] = br0 - br1;
                cr2[kk] = br2 - bi3;
                cr3[kk] = br2 + bi3;
                ci1[kk] = bi0 - bi1;
                ci2[kk] = bi2 + br3;
                ci3[kk] = bi2 - br3;
                tr = Type(IRT2)*(br5-bi5);
                ti = Type(IRT2)*(br5+bi5);
                cr4[kk] = br4 + tr;
                ci4[kk] = bi4 + ti;
                cr5[kk] = br4 - tr;
                ci5[kk] = bi4 - ti;
                tr = -Type(IRT2)*(br7+bi7);
                ti = Type(IRT2)*(br7-bi7);
                cr6[kk] = br6 + tr;
                ci6[kk] = bi6 + ti;
                cr7[kk] = br6 - tr;
                ci7[kk] = bi6 - ti;
      	    }
      	}
    }
}


/**
 * This routine replaces the input Complex<Type> vector by its
 * finite discrete Fourier transform if direction == FORWARD.
 * It replaces the input Complex<Type> vector by its finite discrete
 * inverse Fourier transform if direction == INVERSE.
 */
template<typename Type>
void FFTMR<Type>::dft( int direction, int n, Complex<Type> *b )
{
    int     i, j;
    int     n2pow, n8pow, nthpo, ipass, nxtlt, length;
    Complex<Type> tmp;

    n2pow = fastLog2(n);
    nthpo = n;

    // Conjugate the input
    if( direction == FORWARD )
        for( i=0; i<n; i++ )
            b[i].im = -b[i].im;

    n8pow = n2pow/3;
    if( n8pow )
    {
        // radix 8 iterations
        for( ipass=1; ipass<=n8pow; ipass++ )
      	{
            nxtlt = 0x1 << ( n2pow - 3*ipass );
            length = 8*nxtlt;
            radix8( nxtlt, nthpo, length,
                    b, b+nxtlt, b+2*nxtlt, b+3*nxtlt,
                    b+4*nxtlt, b+5*nxtlt, b+6*nxtlt, b+7*nxtlt );
      	}
    }

    // A final radix 2 or radix 4 iteration is needed.
    if( n2pow%3 == 1 )
    	radix2( nthpo, b, b+1 );
    if( n2pow%3 == 2 )
        radix4( nthpo, b, b+1, b+2, b+3 );

     // scale outputs
    if( direction == FORWARD )
        for( i=0; i<n; i++ )
            b[i].im *= -1;

    if( direction == INVERSE )
    {
        for( i=0; i<nthpo; i++ )
        {
            b[i].re /= n;
            b[i].im /= n;
        }
    }

    // bit reverse
    Vector<int> bitrev(n);
    bitReverse( bitrev );
	for( i=0; i<n; ++i )
	{
		j = bitrev[i];
		if( i < j )
		{
            tmp = b[i];
            b[i] = b[j];
            b[j] = tmp;
		}
	}
}


/**
 * Forward Transform
 */
template<typename Type>
void FFTMR<Type>::fft( Vector<complex<Type> > &xn )
{
    int nFFT = xn.size();
    if( isPower2(nFFT)  )
        dft( FORWARD, nFFT, reinterpret_cast<Complex<Type>*>(xn.begin()) );
    else
        cerr << "The length of signal must abe power of 2!" ;
}

template<typename Type>
void FFTMR<Type>::fft( const Vector<Type> &xn, Vector< complex<Type> > &Xk )
{
    int nFFT = xn.size();
    if( isPower2(nFFT)  )
    {
        if( Xk.size() != nFFT )
            Xk.resize(nFFT);
        for( int i=0; i<nFFT; ++i )
            Xk[i] = xn[i];

        dft( FORWARD, nFFT, reinterpret_cast<Complex<Type>*>(Xk.begin()) );
    }
    else
        cerr << "The length of signal must abe power of 2!" ;
}


/**
 * Inverse Transform
 */
template<typename Type>
void FFTMR<Type>::ifft( Vector<complex<Type> > &Xk )
{
    int nFFT = Xk.size();
    if( isPower2(nFFT)  )
        dft( INVERSE, nFFT, reinterpret_cast<Complex<Type>*>(Xk.begin()) );
    else
        cerr << "The length of signal must abe power of 2!" ;
}

template<typename Type>
void FFTMR<Type>::ifft( const Vector< complex<Type> > &Xk, Vector<Type> &xn )
{
    int nFFT = Xk.size();
    Vector< complex<Type> > tmp(Xk);
    if( isPower2(nFFT)  )
    {
        dft( INVERSE, nFFT, reinterpret_cast<Complex<Type>*>(tmp.begin()) );

        if( xn.size() != nFFT )
            xn.resize(nFFT);
        for( int i=0; i<nFFT; ++i )
            xn[i] = tmp[i].real();
    }
    else
        cerr << "The length of signal must abe power of 2!" ;
}

测试代码:

/*****************************************************************************
 *                               fftmr_test.cpp
 *
 * Mixed Radix Algorithm FFT testing.
 *
 * Zhang Ming, 2010-04, Xi'an Jiaotong University.
 *****************************************************************************/


#include <iostream>
#include <iomanip>
#include <fftmr.h>


using namespace std;
using namespace splab;


typedef double  Type;
const   int     LENGTH = 32;


int main()
{
    int     i, j, index, rows = LENGTH/4;

    Vector<Type> xn(LENGTH);
    Vector< complex<Type> > yn(LENGTH),
                              Xk(LENGTH);
    FFTMR<Type> Fourier;

    cout << "The original signal is: " << endl;
    for( i=0; i<rows; i++ )
    {
        cout << endl;
        for( j=0; j<3; j++ )
        {
            index = 3*i+j;
            xn[index] = i+j;
            cout << setiosflags(ios::fixed) << setprecision(6);
            cout << "\t" << xn[index];
        }
    }
    cout << endl << endl;

    Fourier.fft( xn, Xk );

    cout << "The Fourier transform of original signal is:" << endl;
    for( i=0; i<rows; i++ )
    {
        cout << endl;
        for( j=0; j<3; j++ )
        {
            index = 3*i+j;
            cout << setiosflags(ios::fixed) << setprecision(6);
            cout << "\t" << Xk[index];
        }
    }
    cout << endl << endl;

    Fourier.ifft( Xk, xn );
    cout << "The inverse Fourier transform is" << endl;
    for( i=0; i<rows; i++ )
    {
        cout << endl;
        for( j=0; j<3; j++ )
        {
            index = 3*i+j;
            cout << setiosflags(ios::fixed) << setprecision(6);
            cout << "\t" << xn[index];
        }
    }
    cout << endl << endl;

    cout << "The original signal is: " << endl;
    for( i=0; i<rows; i++ )
    {
        cout << endl;
        for( j=0; j<3; j++ )
        {
            index = 3*i+j;
            yn[index] = complex<double>(i,j);
            cout << setiosflags(ios::fixed) << setprecision(6);
            cout << "\t" << yn[index];
        }
    }
    cout << endl << endl;

    Fourier.fft( yn );
    cout << "The Fourier transform of original signal is:" << endl;
    for( i=0; i<rows; i++ )
    {
        cout << endl;
        for( j=0; j<3; j++ )
        {
            index = 3*i+j;
            cout << setiosflags(ios::fixed) << setprecision(6);
            cout << "\t" << yn[index];
        }
    }
    cout << endl << endl;

    Fourier.ifft( yn );
    cout << "The inverse Fourier transform is" << endl;
    for( i=0; i<rows; i++ )
    {
        cout << endl;
        for( j=0; j<3; j++ )
        {
            index = 3*i+j;
            cout << setiosflags(ios::fixed) << setprecision(6);
            cout << "\t" << yn[index];
        }
    }

    cout << endl << endl;
    return 0;
}

运行结果:

The original signal is:

        0.000000        1.000000        2.000000
        1.000000        2.000000        3.000000
        2.000000        3.000000        4.000000
        3.000000        4.000000        5.000000
        4.000000        5.000000        6.000000
        5.000000        6.000000        7.000000
        6.000000        7.000000        8.000000
        7.000000        8.000000        9.000000

The Fourier transform of original signal is:

        (108.000000,0.000000)   (-52.827446,1.358153)   (-0.613126,-23.640092)
        (13.310056,1.647944)    (-4.000000,9.656854)    (-8.902567,-4.353284)
        (3.082392,-7.681941)    (5.303682,2.676653)     (-4.000000,4.000000)
        (-5.314558,-4.659704)   (0.917608,-8.368233)    (0.220781,11.701395)
        (-4.000000,1.656854)    (-0.343999,-3.954231)   (4.613126,-0.326383)
        (0.554051,4.364941)     (-4.000000,-0.000000)   (0.554051,-4.364941)
        (4.613126,0.326383)     (-0.343999,3.954231)    (-4.000000,-1.656854)
        (0.220781,-11.701395)   (0.917608,8.368233)     (-5.314558,4.659704)

The inverse Fourier transform is

        0.000000        1.000000        2.000000
        1.000000        2.000000        3.000000
        2.000000        3.000000        4.000000
        3.000000        4.000000        5.000000
        4.000000        5.000000        6.000000
        5.000000        6.000000        7.000000
        6.000000        7.000000        8.000000
        7.000000        8.000000        9.000000

The original signal is:

        (0.000000,0.000000)     (0.000000,1.000000)     (0.000000,2.000000)
        (1.000000,0.000000)     (1.000000,1.000000)     (1.000000,2.000000)
        (2.000000,0.000000)     (2.000000,1.000000)     (2.000000,2.000000)
        (3.000000,0.000000)     (3.000000,1.000000)     (3.000000,2.000000)
        (4.000000,0.000000)     (4.000000,1.000000)     (4.000000,2.000000)
        (5.000000,0.000000)     (5.000000,1.000000)     (5.000000,2.000000)
        (6.000000,0.000000)     (6.000000,1.000000)     (6.000000,2.000000)
        (7.000000,0.000000)     (7.000000,1.000000)     (7.000000,2.000000)

The Fourier transform of original signal is:

        (84.000000,24.000000)   (-42.542528,1.020494)   (5.034128,-18.695144)
        (13.685581,5.361763)    (-4.000000,9.656854)    (-6.244002,-4.826961)
        (6.192124,-5.705118)    (6.023013,5.306175)     (-4.000000,4.000000)
        (-1.277237,-6.299534)   (13.722858,-4.086928)   (-8.776842,-2.726593)
        (-4.000000,1.656854)    (-1.716734,-2.445797)   (2.729646,0.149298)
        (-0.485914,4.057658)    (-4.000000,-0.000000)   (0.861334,-3.324976)
        (4.137445,2.209863)     (-1.852433,5.326967)    (-4.000000,-1.656854)
        (14.648770,-2.703773)   (-3.363697,-4.437017)   (-3.674728,0.622383)

The inverse Fourier transform is

        (-0.000000,0.000000)    (0.000000,1.000000)     (0.000000,2.000000)
        (1.000000,-0.000000)    (1.000000,1.000000)     (1.000000,2.000000)
        (2.000000,0.000000)     (2.000000,1.000000)     (2.000000,2.000000)
        (3.000000,-0.000000)    (3.000000,1.000000)     (3.000000,2.000000)
        (4.000000,-0.000000)    (4.000000,1.000000)     (4.000000,2.000000)
        (5.000000,-0.000000)    (5.000000,1.000000)     (5.000000,2.000000)
        (6.000000,-0.000000)    (6.000000,1.000000)     (6.000000,2.000000)
        (7.000000,0.000000)     (7.000000,1.000000)     (7.000000,2.000000)


Process returned 0 (0x0)   execution time : 0.109 s
Press any key to continue.

你可能感兴趣的:(2的整次幂长度FFT算法的C++实现)