1. 以太网最初基于同轴电缆.1972年发明,1979年Xerox\inter和DEC提出DIX版.
2. 1983年,IEEE802.3标准提出.
3. CSMA/CD 通讯过程,传输—监听—干扰—随机等待—传输。
4. 传统以太网用网桥来分割主机,用路由器连接网段。
5. 交换式以太网,平时主机都不连通,当需要通信时,通过交换设备连接对端主机,完成后断开。交换设备包括,交换式集线器和交换机。
6. 交换式以太网物理逻辑均为星型。分割冲突域,将网络冲突限制到最小范围。
7. RMON共九组,常用的端口统计、历史、告警、事件4组。
8. 数据流量区分,按组织行政构成、按主机类型、按物理分布、根据应用类型。
9. 80/20规则,80%在本地,20%其他网段。20/80规则,相反。
10. 交换机单个百兆口64字节包转发1488810pps,路由器整机64字节包转发小与100100pps。
11. 三层交换技术的实现硬件的路由转发,转发路由表也是由软件通过路由协议建立的。
12. 三层交换与路由均为根据逻辑地址确定路径、运行三层校验和、使用TTL、对信息处理和相应,分析报文、用MIB更新SNMP管理。
13. 三层交换优点:基于硬件包转发、低时延、低花费。
14. 四层交换基于数据流,实现一次路由,多次交换。考虑端口号和协议字段。
15. 局域网设计原则,考察物理链路、分析数据流特征、采用层次化模型、考虑冗余
16. 局域网管理系统功能:配置功能、监控功能、故障隔离。
17. 必须保证的网络性能,带宽和时延。其取决的一个重要因素,线缆的类型和布局。
18. 为用户增加带宽,增加总体带宽&减少在一个共享介质上的用户数量。
19. 快速以太网(100M)标准为802.3u。
20. 自协商使用物理芯片来完成,不需要专用的数据报文。发送16bi的报文,整个保文按16ms间隔重复。
21. 速率不通过自协商一样可完成,但工作方式会产生问题。一段强制10m全双工,另一端会自协商为10m半双工。
22. 自协商优先级:100BASE-TX全双工、100BASE-T4、100BASE-TX、10BASE-T全双工、10BASE-T
23. 千兆以太网自协商已经实现,但光纤上的以太网自协商不能成功。
24. 交换机属于MDIX设备,PC为MDI设备。物理芯片实现。
25. 半双工采用后推压力(backpressure)技术实现,流量控制。
26. 全双工流控遵行802.3x标准,采用64字节“PAUSE” MAC帧。该帧采用组播地址01-80-c2-00-00-01。
27. PAUSE应用于终端和交换机之间,不能解决稳定状态的拥塞,端到端的流量控制和比简单停-起更复杂的操作。
28. 端口聚合只适用于802.3协议族的MAC机制。
29. 流控命令 flow-control
30. 配置端口聚合(干路)link-aggregation port_num1 to port_num2
31. 3526可实现3个以太网分组和一个光分组,每组8个。E0/1、e0/9、e0/17、G1/1
32. vlan划分:基于端口、基于mac、基于协议、基于子网
33. 虚拟桥接局域网(VLAN)标准-802.1Q。
34. 802.1Q定义了vlan的架构(MAC帧格式)、所提供的服务、实施中涉及的协议和算法。
35. dot1q标签头包含了2字节标签协议标识(TPID)和两字节标签控制信息(TCL)。TPID固定值0x8100。TCL包括priority、CFI和VLAN ID。
36. 所有具有dot1q的标签头的帧为tagged 帧。
37. GARP通用属性注册协议,其应用为GVRP和GMRP
38. GARP消息有5种,join in、leave、empty、join empty、leave all。
39. GVRP是动态VLAN注册协议,开启为gvrp。
40. GVRP 分3类:normal 可动态创建、注册和注销vlan。Fixed 允许手工创建和注册vlan,防止vlan的注销和其他接口注册此接口所知vlan。 Forbidden 注销除了vlan1以外的所有vlan,禁止在接口上创建和注册其他vlan。
41. PVLAN配置,isolate-user-vlan enable ,建立映射关系后要对接口进行操作必须先解除原来的映射关系。
42. trunk只允许缺省vlan不打标签,hybird允许多个vlan 不打标签通过。
43. 以太网帧长固定,三层交换机采用与路由器最长地址掩码匹配不同的方法-精确地址匹配处理报文。
44. 基于流的交换,第一个报文经过三层处理,其他的进行2次转发。包交换,每个包都要进行三层检查。
45. 802.1D生成树协议,在网桥间传递一种特殊的配置信息BPDU。功能:选择根桥、计算最短路径、选出指定网桥、选择个端口、选择包含在生成树上的端口。
46. BPDU包括:根桥ID、最小路径开销、指定网桥ID、指定端口ID。
47. 网桥ID用网桥优先级和mac地址组合来表示。
48. BPDU采用固定mac地址01-80-c2-00-00-00来作为目的地址。SAP值0x42。
49. 根桥为网桥ID最小的那个。
50. BPDU优先级比较原则:4者依次,最小的为优。
51. 拓扑改变消息包括拓扑改变通知消息、拓扑改变应答消息、拓扑改变消息。
52. STP定时发送的周期为hello time,配置消息生存周期为message age,最大生存周期为max age。
53. 避免临时回路的方法:设置中间状态,阻塞态经过一个forward delay进入中间状态,中间状态经过一个forward delay进入转发态。
54. stp 端口的几种状态:disabled 不收发任何报文。Blocking 不接收和发送数据,接受但 不发送bpdu,不进行地址学习。Listening不接收和发送数据,接受并发送bpdu,不进行地址学习。Learning 不接收或转发数据,接受并发送bpdu,开始地址学习。 Forwarding 接受并转发数据,接受并发送bpdu,学习地址。
55. mac地址表老化时间值大于生成树重新计算所需时间,一盘情况使用较长值15min,生成树重新计算后使用较短的缓冲区超时值。
56. 快速生成树改进:1. 若旧的根端口已经阻塞,新的根端口连接网段的指定端口正好处于转发态,那新的根端口可无延时进入转发。2. 等待进入转发的指定非边缘接口向下游发送一个握手报文,下游若回应赞同,则此接口无延时进入转发。握手必须在点对点链路中,会向下传递握手直到网络边缘。 3. 边缘接口无时延进入转发。
57. 点对点链路,1.为聚合链路。2. 端口自协商在全双工模式。3. 端口被配置为全双工。
58. STP与RSTP区别:协议版本不同、端口状态转换方式不同、配置消息报文格式不同、拓扑改变消息传播方式不同。
59. RSTP也是单生成树实例,网络直径最好不要超过7。
60. STP可配参数,网桥优先级32768 步长4096、端口优先级128 步长16、路径开销2w、hellotime 2s/max age 20s/forward delay 15s、交换网络直径7。
61. STP 可debug error、packet、event。
62. 组播向一组主机发送消息,存在于某个组的所有主机都可接受到消息。组播源只发送一份数据报,杂需要复制的地方会被复制分发,每个网段内都保持有一分数据流。
63. 组播应用,多媒体会议、数据分发、实时数据组播、游戏与仿真。
64. 组播优势在与提高效率、优化性能和分布式应用。
EIGRP与OSPF的区别
1. EIGRP是cisco专用的,而OSPF则是通用的协议。
2. EIGRP是一个距离矢量协议(有些资料说是混合型的),而OSPF是链路状态协议。
3. EIGRP支持自动汇总功能,它可以在A.B.C类网络的边界实现自动汇总,同时也支持手动配置;而OSPF则不可以,汇总必须手动配置
4. EIGRP的汇聚速度要比OSPF快,因为在它的拓扑图中保存了可选后继,直接后继找不到时可以直接通过可选后继转发。
5. EIGRP的多播地址是224.0.0.10,OSPF是224.0.0.5和224.0.0.6。
6. EIGRP的路径度量是复合型的,OSPF则是Cost型的(当然一般的cost还是根据bandwidth来计算的)
7. 尽管EIGRP支持路由汇总功能,但是它没有分级(hierachical)路由的概念,不像OSPF那样对网络进行分级。
8. 在邻居关系的建立上,EIGRP没有OSPF那么复杂的down-init-two way的过程,只要一个路由器看到邻居的hello包,它就与之建立邻接关系。
9. 在汇总功能的实现上,EIGRP可以在任何路由器的任何接口实现,而OSPF则只能在ABR和ASBR上实现,而且它的路由汇总不是基于接口的。
10. EIGRP支持不等路径度量值的负载均衡,而OSPF则只支持相等度量值的负载均衡。
11. EIGRP使用DUAL算法计算最短路径,而且它采用了有限状态机(finite-state machine)来跟踪所有的路由信息包,保证无回路(loop-free)以及后继路由的选择。OSPF采用Dijikstra算法计算最短路径,它不采用有限状态机。
12. EIGRP邻接关系的确立只要两个参数相符合就行:K-value和AS number;而OSPF的邻接关系的建立需要多个参数符合:hello/dead timer ,authentication password,area id, stub flag等。
13. 最后就是它们配置以及检查(show command)上的不同了,这方面不同点很多,就要慢慢体会了。如ospf 中的show ip ospf database对应eigrp中的show ip eigrp topology。
了解常见服务器芯片组
了解常见服务器芯片组
ServerWorks GC-HE芯片组是为两路至四路至强服务器所设计。在GC-HE芯片与内存之间通过4条数据通道连接,其数据带宽达到了6.4GB,最大内存容易提升到64GB。GC-HE芯片组可以通过3条IM Bus分别连接3颗CIOB-X芯片,最多可以连接6个PCI-X设备,而LE只有4个。
ServerWorks GC-LE芯片组可以支持两路至强处理器,其内存控制器采用两个8bit通道连接内存,其带宽总和为3.2GB,可以支持16GB的DDR内存。GC-LE内存控制器通过两条IM Bus分别连接2颗CIOB-X,每条数据链路的带宽都为3.2GBps,可以为PCI-X设备提供足够高的带宽。
E7500是Intel公司首次在服务器应用领域中推出采用DDR内存的主板芯片组,虽然E7500的内存控制器(MCH)目前只支持100MHz的内存工作频率,但是通过采用2个内存通道,E7500可以提供最大3.2GBps的内存带宽,这个数值与400MHz前端总线的Xeon处理器的带宽恰好相同。不过我们在E7500的结构图中看到,连接两颗Xeon处理器的仍旧是采用总线(3.2GBps)共享的方式。
除了采用DDR内存以外,E7500最大的改进就在于其I/O控制以及芯片间数据通道的改进。从i810芯片组开始,Intel公司在此后推出的i800系列芯片组中都采用了IHA(Intel Hub Architecture)。以往所采用连接MCH和ICH之间的HL(Hub-Link)协议是1.0,而在E7500芯片组中采用的HL协议提升为1.5和2.0两个版本。之所以在一个芯片组产品中采用2个Hub-Link规范,是因为E7500芯片组中为了满足高数据吞吐设备的需求,采用64bit的PCI/PCI-X P64H2芯片提供了新的PCI-X接口。 E7500芯片组可以通过3个P64H2芯片提供3条HL2.0通道,每条通道可以为用户提供1.066GBps的I/O带宽,而且每个P64H2芯片可以提供2个64位的PCI或PCI-X通道。根据不同的应用环境,主板厂商可以在主板上设置66、100甚至133MHz的PCI-X插槽,对于那些高速RAID或者其他需要较大数据传输速率的设备,E7500芯片组在PCI/PCI-X上的灵活配置以及强大的性能足以满足目前设备的需要。
E7500芯片组中也配备了ICH3-S芯片,连接MCH与ICH3-S芯片的是1.5版本的Hub-Link,通过这条8位66MHz的数据通道,用户可以连接PCI、ATA以及USB等设备