这道题是求解几个矩形未被遮挡的面积问题, 可以使用漂浮法来解决, 什么事漂浮法请看这里http://www.nocow.cn/index.php/USACO/window, 代码如下:
/* ID: m1500293 LANG: C++ PROG: window */ #include <cstdio> #include <algorithm> #include <cstring> using namespace std; char s[80]; int buttom, top; struct Window { char name; int x1, y1, x2, y2; }win[110]; int nwin; void ocreate(char a[]) { char n; int x1, y1, x2, y2; sscanf(a, "w(%c,%d,%d,%d,%d)", &n, &x1, &y1, &x2, &y2); if(x1 > x2) swap(x1, x2); if(y1 > y2) swap(y1, y2); nwin++; for(int i=nwin-1; i>=1; i--) win[i] = win[i-1]; win[0] = (Window){n, x1, y1, x2, y2}; } void otop(char s[]) { char n = s[2]; int idx = -1; for(int i=0; i<nwin; i++) if(win[i].name == n) {idx=i; break;} Window tp = win[idx]; for(int i=idx; i>=1; i--) win[i] = win[i-1]; win[0] = tp; } void obt(char s[]) { char n = s[2]; int idx = -1; for(int i=0; i<nwin; i++) if(win[i].name == n) {idx=i; break;} Window tp = win[idx]; for(int i=idx; i<nwin-1; i++) win[i] = win[i+1]; win[nwin-1] = tp; } void od(char s[]) { char n = s[2]; int idx = -1; for(int i=0; i<nwin; i++) if(win[i].name == n) {idx=i; break;} for(int i=idx; i<nwin-1; i++) win[i] = win[i+1]; nwin--; } double area; void dfs(int k, int x1, int y1, int x2, int y2) { if(k==-1) { area += (x2-x1)*(y2-y1); return; } if(k>=0 && (win[k].x1>=x2||win[k].x2<=x1||win[k].y1>=y2||win[k].y2<=y1)) { dfs(k-1, x1, y1, x2, y2); return ; } if(win[k].x1>x1) { dfs(k-1, x1, y1, win[k].x1, y2); x1=win[k].x1; } if(win[k].y1>y1) { dfs(k-1, x1, y1, x2, win[k].y1); y1=win[k].y1; } if(win[k].x2<x2) { dfs(k-1, win[k].x2, y1, x2, y2); x2=win[k].x2; } if(win[k].y2<y2) { dfs(k-1, x1, win[k].y2, x2, y2); y2=win[k].y2; } } void os(char s[]) { area = 0.0; int idx = -1; for(int i=0; i<nwin; i++) if(win[i].name == s[2]) { idx=i; break; } dfs(idx-1, win[idx].x1, win[idx].y1, win[idx].x2, win[idx].y2); int x1=win[idx].x1, x2=win[idx].x2, y1=win[idx].y1, y2=win[idx].y2; printf("%.3f\n", area/((x2-x1)*(y2-y1))*100); } int main() { freopen("window.in", "r", stdin); freopen("window.out", "w", stdout); nwin = 0; while(scanf("%s", s) != EOF) { switch(s[0]) { case 'w': ocreate(s); break; case 't': otop(s); break; case 'b': obt(s); break; case 'd': od(s); break; case 's': os(s); break; } } return 0; }