数据范围太大不能直接高斯消元, tarjan缩点然后按拓扑逆序对每个强连通分量高斯消元就可以了.
E(u) = 1 + Σ E(v) / degree(u)
对拍时发现网上2个程序的INF判断和我不一样(他们2个的INF判断也不一样).....然而都A掉了....我觉得应该是他们写错了,我的做法应该没错的(正反2遍dfs,GDOI2015day1t1大冒险)(求打脸
------------------------------------------------------------------------
#include<cmath>
#include<stack>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn = 10009;
const int maxb = 209;
const double eps = 1e-8;
int N, S, T, deg[maxn];
int dfn[maxn], low[maxn], sz[maxn], CK;
int scc[maxn], Scc[maxn][maxb], Id[maxn], n;
bool F[maxn];
stack<int> stk;
double ans[maxn], mat[maxb][maxb];
inline void Min(int &x, int t) {
if(t < x) x = t;
}
struct edge {
int t;
edge* n;
} E[5000000], *pt = E;
struct G {
edge* H[maxn];
bool vis[maxn];
inline void AddEdge(int u, int v) {
pt->t = v, pt->n = H[u], H[u] = pt++;
}
void dfs(int x) {
vis[x] = true;
for(edge* e = H[x]; e; e = e->n)
if(!vis[e->t]) dfs(e->t);
}
void DFS(int x) {
memset(vis, 0, sizeof vis);
dfs(x);
}
} g[3];
void tarjan(int x) {
dfn[x] = low[x] = ++CK;
stk.push(x);
for(edge* e = g[0].H[x]; e; e = e->n) if(!dfn[e->t]) {
tarjan(e->t);
Min(low[x], low[e->t]);
} else if(!~scc[e->t])
Min(low[x], dfn[e->t]);
if(dfn[x] == low[x]) {
int t;
do {
t = stk.top(); stk.pop();
scc[t] = n;
Id[t] = sz[n];
Scc[n][sz[n]++] = t;
} while(t != x);
n++;
}
}
void Init() {
int m, u, v;
scanf("%d%d%d%d", &N, &m, &S, &T);
S--, T--;
memset(deg, 0, sizeof deg);
while(m--) {
scanf("%d%d", &u, &v);
u--, v--;
if(u == T) continue;
g[0].AddEdge(u, v);
deg[u]++;
}
}
void Solve(int x) {
if(x == scc[T]) {
ans[T] = 0;
return;
}
for(int i = 0; i < sz[x]; i++) {
for(int j = 0; j < sz[x]; j++) mat[i][j] = 0;
mat[i][sz[x]] = deg[Scc[x][i]];
for(edge* e = g[0].H[Scc[x][i]]; e; e = e->n)
if(scc[e->t] == x) {
mat[i][Id[e->t]]--;
} else if(e->t != T)
mat[i][sz[x]] += ans[e->t];
mat[i][i] += deg[Scc[x][i]];
}
for(int i = 0, r; i < sz[x]; i++) {
r = i;
for(int j = i; ++j < sz[x]; )
if(fabs(mat[j][i]) > fabs(mat[r][i])) r = j;
if(r != i) {
for(int j = 0; j <= sz[x]; j++)
swap(mat[i][j], mat[r][j]);
}
for(int j = i; ++j < sz[x]; ) {
double t = mat[j][i] / mat[i][i];
for(int k = i; k <= sz[x]; k++)
mat[j][k] -= t * mat[i][k];
}
}
for(int i = sz[x]; i--; ) {
for(int j = i; ++j < sz[x]; )
mat[i][sz[x]] -= mat[j][sz[x]] * mat[i][j];
mat[i][sz[x]] /= mat[i][i];
}
for(int i = 0; i < sz[x]; i++)
ans[Scc[x][i]] = mat[i][sz[x]];
}
void dfs(int x) {
for(edge* e = g[1].H[x]; e; e = e->n)
if(!F[e->t]) dfs(e->t);
F[x] = true;
Solve(x);
}
void Work() {
if(S == T) {
puts("0.000");
return;
}
memset(dfn, 0, sizeof dfn);
memset(scc, -1, sizeof scc);
memset(sz, 0, sizeof sz);
CK = n = 0;
for(int i = 0; i < N; i++)
if(!dfn[i]) tarjan(i);
for(int i = 0; i < N; i++)
for(edge* e = g[0].H[i]; e; e = e->n) if(scc[i] != scc[e->t]) {
g[1].AddEdge(scc[i], scc[e->t]);
g[2].AddEdge(scc[e->t], scc[i]);
}
g[1].DFS(scc[S]), g[2].DFS(scc[T]);
for(int i = 0; i < n; i++) if(g[1].vis[i] && !g[2].vis[i]) {
puts("INF"); return;
}
memset(F, 0, sizeof F);
dfs(scc[S]);
printf("%.3lf\n", ans[S]);
}
int main() {
Init();
Work();
return 0;
}
------------------------------------------------------------------------
2707: [SDOI2012]走迷宫
Time Limit: 10 Sec
Memory Limit: 128 MB
Submit: 372
Solved: 149
[ Submit][ Status][ Discuss]
Description
Morenan被困在了一个迷宫里。迷宫可以视为N个点M条边的有向图,其中Morenan处于起点S,迷宫的终点设为T。可惜的是,Morenan非常的脑小,他只会从一个点出发随机沿着一条从该点出发的有向边,到达另一个点。这样,Morenan走的步数可能很长,也可能是无限,更可能到不了终点。若到不了终点,则步数视为无穷大。但你必须想方设法求出Morenan所走步数的期望值。
Input
第1行4个整数,N,M,S,T
第[2, M+1]行每行两个整数o1, o2,表示有一条从o1到o2的边。
Output
一个浮点数,保留小数点3位,为步数的期望值。若期望值为无穷大,则输出"INF"。
【样例输入1】
6 6 1 6
1 2
1 3
2 4
3 5
4 6
5 6
【样例输出1】
3.000
【样例输入2】
9 12 1 9
1 2
2 3
3 1
3 4
3 7
4 5
5 6
6 4
6 7
7 8
8 9
9 7
【样例输出2】
9.500
【样例输入3】
2 0 1 2
【样例输出3】
INF
【数据范围】
测试点
|
N
|
M
|
Hint
|
[1, 6]
|
<=10
|
<=100
|
|
[7, 12]
|
<=200
|
<=10000
|
|
[13, 20]
|
<=10000
|
<=1000000
|
保证强连通分量的大小不超过100
|
另外,均匀分布着40%的数据,图中没有环,也没有自环
Sample Input
Sample Output
HINT
Source