- 自然语言处理系列五十四》文本聚类算法》K-means文本聚类算法原理
陈敬雷-充电了么-CEO兼CTO
算法大数据人工智能自然语言处理nlpai人工智能kmeansAIGC聚类
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】文章目录自然语言处理系列五十四文本聚类算法》K-means文本聚类算法原理K-means文本聚类算法代码实战总结自然语言处理系列五十四文本聚类算法》K-means文本聚类算法原理K-means文本聚类是K-means算法的一个常用应用场景,下面介绍
- 自然语言处理系列五十五》文本聚类算法》LDA主题词-潜在狄利克雷分布模型算法原理
陈敬雷-充电了么-CEO兼CTO
人工智能大数据算法算法自然语言处理聚类AIGCaigcchatgpt大数据
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】文章目录自然语言处理系列五十五文本聚类算法》LDA主题词-潜在狄利克雷分布模型算法原理LDA主题词-潜在狄利克雷分布模型代码实战总结自然语言处理系列五十五文本聚类算法》LDA主题词-潜在狄利克雷分布模型算法原理LDA是潜在狄利克雷分布模型的简称,也
- SPSSAU【文本分析】|文本聚类
spssau
支持向量机机器学习人工智能
SPSSAU共提供两种文本聚类方式,分别是按词聚类和按行聚类。按词聚类是指将需要分析的关键词进行聚类分析,并且进行可视化展示,即针对关键词进行聚类,此处关键词可以自由选择。按行聚类分析是指针对以‘行’为单位进行聚类分析,将原始文本中多行数据聚为几个类别,并且可将具体聚类类别信息进行下载等。按词聚类分析按词聚类分析操作如下图:默认情况下,系统会将词频靠前的20个关键词提取,并且得到其词向量值,并且其
- 新媒体与传媒行业数据分析实践:从网络爬虫到文本挖掘的综合应用,以“中国文化“为主题
八块腹肌的小胖
数据分析python
大家好,我是八块腹肌的小胖,下面将围绕微博“中国文化”以数据分析、数据处理、建模及可视化等操作目录1、数据获取2、数据处理3、词频统计及词云展示4、文本聚类分析5、文本情感倾向性分析6、情感倾向演化分析7、总结1、数据获取本任务以新浪微博为目标网站,爬取“中国文化”为主题的微博数据进行数据预处理、数据可视化等操作。目标网站如图1所示:图1微博网站及分析通过分析微博网站,使用爬虫获取代码,爬虫核心伪
- 网络信息检索(九)文本分类与文本聚类
Ordinary_yfz
网络信息检索
文章目录一、文本分类和聚类概述1:文本分类概述2:文本聚类概述二、文本分类1:分类的学习算法2:使用相关反馈(Rocchio)3:最近邻学习算法4:贝叶斯理论三、文本聚类1:K-Means一、文本分类和聚类概述1:文本分类概述文本分类的定义\color{red}\textbf{文本分类的定义}文本分类的定义文本分类(TextCategorization/Classification):事先给定分类
- 用Py做文本分析5:关键词提取
凡有言说
1.关键词提取关键词指的是原始文档的和核心信息,关键词提取在文本聚类、分类、自动摘要等领域中有着重要的作用。针对一篇语段,在不加人工干预的情况下提取出其关键词首先进行分词处理关键词分配:事先给定关键词库,然后在文档中进行关键词检索关键词提取:根据某种规则,从文档中抽取最重要的词作为关键词有监督:抽取出候选词并标记是否为关键词,然后训练相应的模型无监督:给词条打分,并基于最高分抽取无监督学习——基于
- NLP深入学习(三):TF-IDF 详解以及文本分类/聚类用法
Smaller、FL
NLP自然语言处理学习tf-idfnlp人工智能
文章目录0.引言1.什么是TF-IDF2.TF-IDF作用3.Python使用3.1计算tf-idf的值3.2文本分类3.3文本聚类4.参考0.引言前情提要:《NLP深入学习(一):jieba工具包介绍》《NLP深入学习(二):nltk工具包介绍》1.什么是TF-IDFTF-IDF(TermFrequency-InverseDocumentFrequency)是一种用于信息检索和文本挖掘的常用加权
- 文本挖掘之主题分析的详细介绍
亦旧sea
机器学习人工智能算法
文本挖掘的主题分析是什么文本挖掘的主题分析是指通过计算机自动处理文本数据,识别出文本中的主题和话题。主题指的是文本中的核心概念或议题,而话题则是具体的讨论点或事件。主题分析可以帮助人们快速了解大量文本数据中的内容和趋势,从而支持信息检索、舆情分析、情感分析、知识发现等应用。主题分析的主要方法包括文本聚类、主题模型、关键词提取等。文本挖掘的主题分析的特点是什么,优缺点是什么文本挖掘的主题分析是通过对
- 文本聚类python fcm_机器学习笔记----Fuzzy c-means(FCM)模糊聚类详解及matlab实现
琥珀月芽
文本聚类pythonfcm
前言:这几天一直都在研究模糊聚类。感觉网上的文档都没有一个详细而具体的讲解,正好今天有时间,就来聊一聊模糊聚类。一:模糊数学我们大家都知道计算机其实只认识两个数字0,1。我们平时写程序其实也是这样if1thendo.永远这种模式,在这种模式中,一个元素要么属于这个集合,要么不属于这个集合,但是对我们现在介绍的模糊集来说,某个元素可能部分属于这个集合,又可能部分属于另外的集合,显然,例如,一个男人(
- 自然语言处理(第17课 文本分类和聚类)
komjay
NLP自然语言处理分类聚类
一、学习目标1.学习文本分类的两种传统机器学习方法:朴素贝叶斯和支持向量机2.学习文本分类的深度学习方法3.学习文本分类的性能评估标准4.学习文本聚类的相似性度量、具体算法、性能评估二、文本分类1.概述将文本分类,主要工作是让机器分析文章内容,辨别其类别。常见的应用有:新闻文章归类,垃圾邮件识别:2.传统机器方法文本分类的传统机器方法,主要包含三个重要核心:文本表示、特征选择、分类算法。放在整体流
- 文本聚类——文本相似度(聚类算法基本概念)
星宇星静
笔记聚类机器学习算法相似度笔记论文笔记
一、文本相似度1.度量指标:两个文本对象之间的相似度两个文本集合之间的相似度文本对象与集合之间的相似度2.样本间的相似度基于距离的度量:欧氏距离曼哈顿距离切比雪夫距离闵可夫斯基距离马氏距离杰卡德距离基于夹角余弦的度量公式:当文本进行了2-范数归一化,余弦相似度与内积相似度是等价的。距离度量衡量的是空间各个点的绝对距离,与各点的位置(即个体特征维度的数值)直接相关,而余弦相似度衡量的事空间向量的夹角
- Python实现Kmeans文本聚类
zkkkkkkkkkkkkk
python机器学习聚类数据挖掘
目录一、数据二、代码2.1、加载停用词2.2、加载数据2.3、计算tf-idf向量值2.4、训练三、完整代码一、数据通过爬虫爬取贴吧数据,这里怎么爬取的就不记录了。然后以一句一行的格式存入到txt中。接着我们要通过对每句话进行分词转向量,最后使用kmeans进行聚类并输出结果。二、代码2.1、加载停用词在stop_words目录下有多个停用词表,需要循环加总所有停用词。defdefined_sto
- 「NLP主题分析」LDA隐含狄利克雷分布(Latent Dirichlet Allocation)
Reese小朋友
MachineLearningStuffs自然语言处理人工智能
是基于贝叶斯思想的无监督的聚类算法,广泛用于文本聚类,文本分析,文本关键词等场景。LDA主题模型主要用于推测文档的主题分布,可以将文档集中每篇文档的主题以概率分布的形式给出根据主题进行主题聚类或文本分类。LDA主题模型不关心文档中单词的顺序,通常使用词袋特征(bag-of-wordfeature)来代表文档。-先了解LDA的生成模型,LDA认为一篇文章是怎么形成的呢?LDA模型认为主题可以由一个词
- tfidf和word2vec构建文本词向量并做文本聚类
饕餮&化骨龙
自然语言处理自然语言处理word2vectf-idf聚类
一、相关方法原理1、tfidftfidf算法是一种用于文本挖掘、特征词提取等领域的因子加权技术,其原理是某一词语的重要性随着该词在文件中出现的频率增加,同时随着该词在语料库中出现的频率成反比下降,即可以根据字词的在文本中出现的次数和在整个语料中出现的文档频率,来计算一个字词在整个语料中的重要程度,并过滤掉一些常见的却无关紧要本的词语,同时保留影响整个文本的重要字词。TF(TermFrequency
- [python] 使用scikit-learn工具计算文本TF-IDF值(转载学习)
彩虹下的天桥
studypythonsklearntextclassify
在文本聚类、文本分类或者比较两个文档相似程度过程中,可能会涉及到TF-IDF值的计算。这里主要讲述基于Python的机器学习模块和开源工具:scikit-learn。希望文章对你有所帮助,相关文章如下:[python爬虫]Selenium获取百度百科旅游景点的InfoBox消息盒Python简单实现基于VSM的余弦相似度计算基于VSM的命名实体识别、歧义消解和指代消解[python]使用Jieba
- 基于Java的文本聚类技术及应用
ByteWhisper
java聚类开发语言Java
文本聚类是一种将相似文本分组的技术,它在自然语言处理领域具有广泛的应用。在本文中,我们将介绍基于Java的文本聚类技术及其应用,并提供相应的代码示例。文本聚类的目标是将具有相似主题或语义含义的文本分组到同一类别中。这种技术可以用于各种任务,如文档分类、信息检索、舆情分析等。Java作为一种广泛使用的编程语言,提供了丰富的工具和库来支持文本聚类的实现。在Java中,我们可以使用开源的机器学习库Wek
- 计算机毕设 基于机器学习的文本聚类 - 可用于舆情分析
DanCheng-studio
聚类毕业设计python毕设
文章目录0简介1项目介绍1.1提取文本特征1.2聚类算法选择2代码实现2.1中文文本预处理2.2特征提取2.2.1Tf-idf2.2.2word2vec2.3聚类算法2.3.1k-means2.3.2DBSCAN2.4实现效果2.4.1tf-idf+k-means聚类结果2.4.2word2vec+k-means聚类结果最后0简介今天学长向大家介绍一个毕设项目,中文文本分类技术中文文本分类(机器学
- 自然语言处理中的文本聚类:揭示模式和见解
无水先生
人工智能机器学习easyui前端javascript
一、介绍在自然语言处理(NLP)领域,文本聚类是一种基本且通用的技术,在信息检索、推荐系统、内容组织和情感分析等各种应用中发挥着关键作用。文本聚类是将相似文档或文本片段分组为簇或类别的过程。这项技术使我们能够发现隐藏的模式、提取有价值的见解并简化大量非结构化文本数据。在本文中,我们将深入研究NLP中的文本聚类领域,探讨其重要性、方法论和实际应用。自然语言处理中的文本聚类就像浩瀚文字海洋中的指南针,
- Python文本聚类分析
api_ok
1024程序员节大数据数据分析java开发语言python
本文将会从数据预处理、特征提取、聚类算法选择等多个方面详细介绍Python文本聚类分析的步骤和方法。一、数据预处理数据预处理是文本聚类分析的第一步,其目的是对原始文本数据进行去噪、规范化、标准化等处理,以便后续的特征提取和聚类。常见的文本预处理方法有:1、去除停用词和标点符号,如“的”、“了”等,可以减小文本的维度,加快计算速度;importjiebaimportre#去除停用词和标点符号defc
- 基于Bert的文本聚类工具:BERTopic
致Great
pythonjava机器学习githublinux
【干货推荐]基于Bert的聚类工具:BERTopic【简介】:BERTopic是一种主题建模技术,它利用变换器和c-TF-IDF创建聚类簇,使主题易于理解,同时在主题描述中保留重要的单词。同时可以支持类似于LDAvis的可视化。【快速上手】安装pipinstallbertopic[visualization]frombertopicimportBERTopicfromsklearn.dataset
- 论文阅读“SimCTC: A Simple Contrast Learning Method of Text Clustering”
掉了西红柿皮_Kee
Li,Chen,etal."SimCTC:ASimpleContrastLearningMethodofTextClustering(StudentAbstract)."ProceedingsoftheAAAIConferenceonArtificialIntelligence.Vol.36.No.11.2022.摘要导读本文提出了一种简单的对比学习方法(SimCTC),大大提升了最先进的文本聚类
- 《学术小白学习之路14》主题建模——主题概率分布相似度计算
驭风少年君
学术小白学习之路学习
《学术小白学习之路14》主题建模——主题概率分布相似度计算一、场景二、主题建模三、主题之间的相似度计算一、场景计算主题概念分布的相似度在自然语言处理和机器学习任务中有多种用途。下面是一些常见的应用场景:1.文本聚类和主题建模:在文本聚类任务中,可以使用主题概念分布的相似度来度量文本之间的语义相似性,并将相似的文本聚类在一起。在主题建模中,可以使用主题概念分布的相似度来比较不同文档的主题分布,从而确
- 自然语言处理1——NLP概述
河篱
自然语言处理自然语言处理nlp
自然语言处理1——NLP概述文章目录自然语言处理1——NLP概述说在前面什么是自然语言处理?机器如何理解自然语言?常见应用文本分类文本聚类情感分析信息抽取命名实体识别实体消歧关系抽取事件抽取自动文摘信息推荐自动问答机器翻译NLP的困难歧义病构重述层间循环依赖NLP方法论理性主义经验主义说在前面本文及后续文章是学习自然语言过程中的学习笔记,存在部分内容可能记录错误或不全情况。希望能帮助到你:D什么是
- R语言文本挖掘:kmeans聚类分析上海玛雅水公园景区五一假期评论词云可视化|附代码数据
数据挖掘深度学习机器学习算法
全文链接:http://tecdat.cn/?p=32307原文出处:拓端数据部落公众号互联网时代,大量的新闻信息、网络交互、舆情信息以文本形式存储在数据库中,如何利用数据分析和文本挖掘的算法,将海量文本的价值挖掘出来,成为我们团队近期的一个研究方向,本案例就是我们的一个尝试。文本聚类其实也就是聚类分析在文本方向上的应用,首先我们要把一个个文档的自然语言转换成数学信息,这样形成高维空间点之后再去计
- KMeans算法全面解析与应用案例
TechLead KrisChang
人工智能算法机器学习自然语言处理pytorch人工智能深度学习
目录一、聚类与KMeans介绍聚类的基础概念KMeans算法的重要性二、KMeans算法原理数据集和特征空间距离度量算法步骤三、KMeans案例实战案例背景:客户细分数据集说明Python实现代码输出与解释四、KMeans的优缺点优点计算效率高算法简单易于实现缺点需要预设K值对初始点敏感处理非凸形状集群的能力差五、KMeans在文本聚类中的应用文本向量化KMeans与TF-IDFPython实现代
- Python:如何实现提取文本关键词、摘要、短语、无监督文本聚类
浩栋丶
python聚类数据挖掘机器学习
我们在使用Python对文本数据进行处理时,通常会遇到提取文本关键词、提取摘要、提取短语或者进行无监督文本聚类等需求。本文将向大家推荐一个非常实用的包pyhanlp,使用这个包中的函数通过几行代码就可以完成以上所有的操作。一、提取文本关键词frompyhanlpimport*content="随着云时代的来临,大数据(Bigdata)也吸引了越来越多的关注。分析师团队认为,大数据(Bigdata)
- [python] Kmeans文本聚类算法+PAC降维+Matplotlib显示聚类图像
进击的雷神
pythonkmeans
0前言本文主要讲述以下几点:1.通过scikit-learn计算文本内容的tfidf并构造N*M矩阵(N个文档M个特征词);2.调用scikit-learn中的K-means进行文本聚类;3.使用PAC进行降维处理,每行文本表示成两维数据;4.最后调用Matplotlib显示聚类效果图。1输入文本输入是读取本地的01_All_BHSpider_Content_Result.txt文件,里面包括10
- jieba结巴分词--关键词抽取(核心词抽取)
毛里里求斯
数据分析与挖掘jieba分词
转自:http://www.cnblogs.com/zhbzz2007欢迎转载,也请保留这段声明。谢谢!1简介关键词抽取就是从文本里面把跟这篇文档意义最相关的一些词抽取出来。这个可以追溯到文献检索初期,当时还不支持全文搜索的时候,关键词就可以作为搜索这篇论文的词语。因此,目前依然可以在论文中看到关键词这一项。除了这些,关键词还可以在文本聚类、分类、自动摘要等领域中有着重要的作用。比如在聚类时将关键
- jieba分词怎么操作_jieba 分词简单应用
weixin_39557797
jieba分词怎么操作
关键词抽取就是从文本里面把跟这篇文档意义最相关的一些词抽取出来。这个可以追溯到文献检索初期,当时还不支持全文搜索的时候,关键词就可以作为搜索这篇论文的词语。因此,目前依然可以在论文中看到关键词这一项。除了这些,关键词还可以在文本聚类、分类、自动摘要等领域中有着重要的作用。比如在聚类时将关键词相似的几篇文档看成一个团簇,可以大大提高聚类算法的收敛速度;从某天所有的新闻中提取出这些新闻的关键词,就可以
- jieba分词关键词抽取
菜鸡程序员丶
学习
1简介关键词抽取就是从文本里面把跟这篇文档意义最相关的一些词抽取出来。这个可以追溯到文献检索初期,当时还不支持全文搜索的时候,关键词就可以作为搜索这篇论文的词语。因此,目前依然可以在论文中看到关键词这一项。除了这些,关键词还可以在文本聚类、分类、自动摘要等领域中有着重要的作用。比如在聚类时将关键词相似的几篇文档看成一个团簇,可以大大提高聚类算法的收敛速度;从某天所有的新闻中提取出这些新闻的关键词,
- SQL的各种连接查询
xieke90
UNION ALLUNION外连接内连接JOIN
一、内连接
概念:内连接就是使用比较运算符根据每个表共有的列的值匹配两个表中的行。
内连接(join 或者inner join )
SQL语法:
select * fron
- java编程思想--复用类
百合不是茶
java继承代理组合final类
复用类看着标题都不知道是什么,再加上java编程思想翻译的比价难懂,所以知道现在才看这本软件界的奇书
一:组合语法:就是将对象的引用放到新类中即可
代码:
package com.wj.reuse;
/**
*
* @author Administrator 组
- [开源与生态系统]国产CPU的生态系统
comsci
cpu
计算机要从娃娃抓起...而孩子最喜欢玩游戏....
要让国产CPU在国内市场形成自己的生态系统和产业链,国家和企业就不能够忘记游戏这个非常关键的环节....
投入一些资金和资源,人力和政策,让游
- JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释
商人shang
jvm内存
jvm区域总体分两类,heap区和非heap区。heap区又分:Eden Space(伊甸园)、Survivor Space(幸存者区)、Tenured Gen(老年代-养老区)。 非heap区又分:Code Cache(代码缓存区)、Perm Gen(永久代)、Jvm Stack(java虚拟机栈)、Local Method Statck(本地方法栈)。
HotSpot虚拟机GC算法采用分代收
- 页面上调用 QQ
oloz
qq
<A href="tencent://message/?uin=707321921&Site=有事Q我&Menu=yes">
<img style="border:0px;" src=http://wpa.qq.com/pa?p=1:707321921:1></a>
- 一些问题
文强chu
问题
1.eclipse 导出 doc 出现“The Javadoc command does not exist.” javadoc command 选择 jdk/bin/javadoc.exe 2.tomcate 配置 web 项目 .....
SQL:3.mysql * 必须得放前面 否则 select&nbs
- 生活没有安全感
小桔子
生活孤独安全感
圈子好小,身边朋友没几个,交心的更是少之又少。在深圳,除了男朋友,没几个亲密的人。不知不觉男朋友成了唯一的依靠,毫不夸张的说,业余生活的全部。现在感情好,也很幸福的。但是说不准难免人心会变嘛,不发生什么大家都乐融融,发生什么很难处理。我想说如果不幸被分手(无论原因如何),生活难免变化很大,在深圳,我没交心的朋友。明
- php 基础语法
aichenglong
php 基本语法
1 .1 php变量必须以$开头
<?php
$a=” b”;
echo
?>
1 .2 php基本数据库类型 Integer float/double Boolean string
1 .3 复合数据类型 数组array和对象 object
1 .4 特殊数据类型 null 资源类型(resource) $co
- mybatis tools 配置详解
AILIKES
mybatis
MyBatis Generator中文文档
MyBatis Generator中文文档地址:
http://generator.sturgeon.mopaas.com/
该中文文档由于尽可能和原文内容一致,所以有些地方如果不熟悉,看中文版的文档的也会有一定的障碍,所以本章根据该中文文档以及实际应用,使用通俗的语言来讲解详细的配置。
本文使用Markdown进行编辑,但是博客显示效
- 继承与多态的探讨
百合不是茶
JAVA面向对象 继承 对象
继承 extends 多态
继承是面向对象最经常使用的特征之一:继承语法是通过继承发、基类的域和方法 //继承就是从现有的类中生成一个新的类,这个新类拥有现有类的所有extends是使用继承的关键字:
在A类中定义属性和方法;
class A{
//定义属性
int age;
//定义方法
public void go
- JS的undefined与null的实例
bijian1013
JavaScriptJavaScript
<form name="theform" id="theform">
</form>
<script language="javascript">
var a
alert(typeof(b)); //这里提示undefined
if(theform.datas
- TDD实践(一)
bijian1013
java敏捷TDD
一.TDD概述
TDD:测试驱动开发,它的基本思想就是在开发功能代码之前,先编写测试代码。也就是说在明确要开发某个功能后,首先思考如何对这个功能进行测试,并完成测试代码的编写,然后编写相关的代码满足这些测试用例。然后循环进行添加其他功能,直到完全部功能的开发。
- [Maven学习笔记十]Maven Profile与资源文件过滤器
bit1129
maven
什么是Maven Profile
Maven Profile的含义是针对编译打包环境和编译打包目的配置定制,可以在不同的环境上选择相应的配置,例如DB信息,可以根据是为开发环境编译打包,还是为生产环境编译打包,动态的选择正确的DB配置信息
Profile的激活机制
1.Profile可以手工激活,比如在Intellij Idea的Maven Project视图中可以选择一个P
- 【Hive八】Hive用户自定义生成表函数(UDTF)
bit1129
hive
1. 什么是UDTF
UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集
2. 如何实现UDTF
继承org.apache.hadoop.hive.ql.udf.generic
- tfs restful api 加auth 2.0认计
ronin47
目前思考如何给tfs的ngx-tfs api增加安全性。有如下两点:
一是基于客户端的ip设置。这个比较容易实现。
二是基于OAuth2.0认证,这个需要lua,实现起来相对于一来说,有些难度。
现在重点介绍第二种方法实现思路。
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGe
- jdk环境变量配置
byalias
javajdk
进行java开发,首先要安装jdk,安装了jdk后还要进行环境变量配置:
1、下载jdk(http://java.sun.com/javase/downloads/index.jsp),我下载的版本是:jdk-7u79-windows-x64.exe
2、安装jdk-7u79-windows-x64.exe
3、配置环境变量:右击"计算机"-->&quo
- 《代码大全》表驱动法-Table Driven Approach-2
bylijinnan
java
package com.ljn.base;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.uti
- SQL 数值四舍五入 小数点后保留2位
chicony
四舍五入
1.round() 函数是四舍五入用,第一个参数是我们要被操作的数据,第二个参数是设置我们四舍五入之后小数点后显示几位。
2.numeric 函数的2个参数,第一个表示数据长度,第二个参数表示小数点后位数。
例如:
select cast(round(12.5,2) as numeric(5,2))  
- c++运算符重载
CrazyMizzz
C++
一、加+,减-,乘*,除/ 的运算符重载
Rational operator*(const Rational &x) const{
return Rational(x.a * this->a);
}
在这里只写乘法的,加减除的写法类似
二、<<输出,>>输入的运算符重载
&nb
- hive DDL语法汇总
daizj
hive修改列DDL修改表
hive DDL语法汇总
1、对表重命名
hive> ALTER TABLE table_name RENAME TO new_table_name;
2、修改表备注
hive> ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comm
- jbox使用说明
dcj3sjt126com
Web
参考网址:http://www.kudystudio.com/jbox/jbox-demo.html jBox v2.3 beta [
点击下载]
技术交流QQGroup:172543951 100521167
[2011-11-11] jBox v2.3 正式版
- [调整&修复] IE6下有iframe或页面有active、applet控件
- UISegmentedControl 开发笔记
dcj3sjt126com
// typedef NS_ENUM(NSInteger, UISegmentedControlStyle) {
// UISegmentedControlStylePlain, // large plain
&
- Slick生成表映射文件
ekian
scala
Scala添加SLICK进行数据库操作,需在sbt文件上添加slick-codegen包
"com.typesafe.slick" %% "slick-codegen" % slickVersion
因为我是连接SQL Server数据库,还需添加slick-extensions,jtds包
"com.typesa
- ES-TEST
gengzg
test
package com.MarkNum;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.annotation
- 为何外键不再推荐使用
hugh.wang
mysqlDB
表的关联,是一种逻辑关系,并不需要进行物理上的“硬关联”,而且你所期望的关联,其实只是其数据上存在一定的联系而已,而这种联系实际上是在设计之初就定义好的固有逻辑。
在业务代码中实现的时候,只要按照设计之初的这种固有关联逻辑来处理数据即可,并不需要在数据库层面进行“硬关联”,因为在数据库层面通过使用外键的方式进行“硬关联”,会带来很多额外的资源消耗来进行一致性和完整性校验,即使很多时候我们并不
- 领域驱动设计
julyflame
VODAO设计模式DTOpo
概念:
VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来。
DTO(Data Transfer Object):数据传输对象,这个概念来源于J2EE的设计模式,原来的目的是为了EJB的分布式应用提供粗粒度的数据实体,以减少分布式调用的次数,从而提高分布式调用的性能和降低网络负载,但在这里,我泛指用于展示层与服务层之间的数据传输对
- 单例设计模式
hm4123660
javaSingleton单例设计模式懒汉式饿汉式
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
&nb
- logback
zhb8015
loglogback
一、logback的介绍
Logback是由log4j创始人设计的又一个开源日志组件。logback当前分成三个模块:logback-core,logback- classic和logback-access。logback-core是其它两个模块的基础模块。logback-classic是log4j的一个 改良版本。此外logback-class
- 整合Kafka到Spark Streaming——代码示例和挑战
Stark_Summer
sparkstormzookeeperPARALLELISMprocessing
作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管。本文,Michael详细的演示了如何将Kafka整合到Spark Streaming中。 期间, Michael还提到了将Kafka整合到 Spark Streaming中的一些现状,非常值得阅读,虽然有一些信息在Spark 1.2版
- spring-master-slave-commondao
王新春
DAOspringdataSourceslavemaster
互联网的web项目,都有个特点:请求的并发量高,其中请求最耗时的db操作,又是系统优化的重中之重。
为此,往往搭建 db的 一主多从库的 数据库架构。作为web的DAO层,要保证针对主库进行写操作,对多个从库进行读操作。当然在一些请求中,为了避免主从复制的延迟导致的数据不一致性,部分的读操作也要到主库上。(这种需求一般通过业务垂直分开,比如下单业务的代码所部署的机器,读去应该也要从主库读取数