在上一节中的 Stage提交中我们提到,最终stage被封装成TaskSet,使用taskScheduler.submitTasks提交,具体代码如下:
taskScheduler.submitTasks(new TaskSet(
tasks.toArray, stage.id, stage.latestInfo.attemptId, stage.firstJobId, properties))
Stage由一系列的tasks组成,这些task被封装成TaskSet,TaskSet类定义如下:
/** * A set of tasks submitted together to the low-level TaskScheduler, usually representing * missing partitions of a particular stage. */
private[spark] class TaskSet( val tasks: Array[Task[_]], val stageId: Int, val stageAttemptId: Int, val priority: Int, val properties: Properties) {
val id: String = stageId + "." + stageAttemptId
override def toString: String = "TaskSet " + id
}
submitTasks方法定义在TaskScheduler Trait当中,目前TaskScheduler 只有一个子类TaskSchedulerImpl,其submitTasks方法源码如下:
//TaskSchedulerImpl类中的submitTasks方法
override def submitTasks(taskSet: TaskSet) {
val tasks = taskSet.tasks
logInfo("Adding task set " + taskSet.id + " with " + tasks.length + " tasks")
this.synchronized {
//创建TaskSetManager,TaskSetManager用于对TaskSet中的Task进行调度,包括跟踪Task的运行、Task失败重试等
val manager = createTaskSetManager(taskSet, maxTaskFailures)
val stage = taskSet.stageId
val stageTaskSets =
taskSetsByStageIdAndAttempt.getOrElseUpdate(stage, new HashMap[Int, TaskSetManager])
stageTaskSets(taskSet.stageAttemptId) = manager
val conflictingTaskSet = stageTaskSets.exists { case (_, ts) =>
ts.taskSet != taskSet && !ts.isZombie
}
if (conflictingTaskSet) {
throw new IllegalStateException(s"more than one active taskSet for stage $stage:" +
s" ${stageTaskSets.toSeq.map{_._2.taskSet.id}.mkString(",")}")
}
//schedulableBuilder中添加TaskSetManager,用于完成所有TaskSet的调度,即整个Spark程序生成的DAG图对应Stage的TaskSet调度
schedulableBuilder.addTaskSetManager(manager, manager.taskSet.properties)
if (!isLocal && !hasReceivedTask) {
starvationTimer.scheduleAtFixedRate(new TimerTask() {
override def run() {
if (!hasLaunchedTask) {
logWarning("Initial job has not accepted any resources; " +
"check your cluster UI to ensure that workers are registered " +
"and have sufficient resources")
} else {
this.cancel()
}
}
}, STARVATION_TIMEOUT_MS, STARVATION_TIMEOUT_MS)
}
hasReceivedTask = true
}
//为Task分配运行资源
backend.reviveOffers()
}
SchedulerBackend有多种实现,如下图所示:
我们以SparkDeploySchedulerBackend为例进行说明,SparkDeploySchedulerBackend继承自CoarseGrainedSchedulerBackend中的reviveOffers方法,具有代码如下:
//CoarseGrainedSchedulerBackend中定义的reviveOffers方法
override def reviveOffers() {
//driverEndpoint发送ReviveOffers消息,由DriverEndPoint接受处理
driverEndpoint.send(ReviveOffers)
}
driverEndpoint的类型是RpcEndpointRef
//CoarseGrainedSchedulerBackend中的成员变量driverEndpoint
var driverEndpoint: RpcEndpointRef = null
它具有如下定义形式:
//RpcEndpointRef是远程RpcEndpoint的引用,它是一个抽象类,有一个子类AkkaRpcEndpointRef
/** * A reference for a remote [[RpcEndpoint]]. [[RpcEndpointRef]] is thread-safe. */
private[spark] abstract class RpcEndpointRef(@transient conf: SparkConf)
extends Serializable with Logging
//在底层采用的是Akka进行实现
private[akka] class AkkaRpcEndpointRef( @transient defaultAddress: RpcAddress, @transient _actorRef: => ActorRef, @transient conf: SparkConf, @transient initInConstructor: Boolean = true)
extends RpcEndpointRef(conf) with Logging {
lazy val actorRef = _actorRef
override lazy val address: RpcAddress = {
val akkaAddress = actorRef.path.address
RpcAddress(akkaAddress.host.getOrElse(defaultAddress.host),
akkaAddress.port.getOrElse(defaultAddress.port))
}
override lazy val name: String = actorRef.path.name
private[akka] def init(): Unit = {
// Initialize the lazy vals
actorRef
address
name
}
if (initInConstructor) {
init()
}
override def send(message: Any): Unit = {
actorRef ! AkkaMessage(message, false)
}
//其它代码省略
DriverEndpoint中的receive方法接收driverEndpoint.send(ReviveOffers)发来的消息,DriverEndpoint继承了ThreadSafeRpcEndpoint trait,具体如下:
class DriverEndpoint(override val rpcEnv: RpcEnv, sparkProperties: Seq[(String, String)]) extends ThreadSafeRpcEndpoint with Logging
ThreadSafeRpcEndpoint 继承 RpcEndpoint trait,RpcEndpoint对receive方法进行了描述,具体如下:
/**
* Process messages from [[RpcEndpointRef.send]] or [[RpcCallContext.reply)]]. If receiving a
* unmatched message, [[SparkException]] will be thrown and sent to `onError`.
*/
def receive: PartialFunction[Any, Unit] = {
case _ => throw new SparkException(self + " does not implement 'receive'")
}
DriverEndpoint 中的对其receive方法进行了重写,具体实现如下:
override def receive: PartialFunction[Any, Unit] = {
case StatusUpdate(executorId, taskId, state, data) =>
scheduler.statusUpdate(taskId, state, data.value)
if (TaskState.isFinished(state)) {
executorDataMap.get(executorId) match {
case Some(executorInfo) =>
executorInfo.freeCores += scheduler.CPUS_PER_TASK
makeOffers(executorId)
case None =>
// Ignoring the update since we don't know about the executor.
logWarning(s"Ignored task status update ($taskId state $state) " +
s"from unknown executor with ID $executorId")
}
}
//重要!处理发送来的ReviveOffers消息
case ReviveOffers =>
makeOffers()
case KillTask(taskId, executorId, interruptThread) =>
executorDataMap.get(executorId) match {
case Some(executorInfo) =>
executorInfo.executorEndpoint.send(KillTask(taskId, executorId, interruptThread))
case None =>
// Ignoring the task kill since the executor is not registered.
logWarning(s"Attempted to kill task $taskId for unknown executor $executorId.")
}
}
从上面的代码可以看到,处理ReviveOffers消息时,调用的是makeOffers方法
// Make fake resource offers on all executors
private def makeOffers() {
// Filter out executors under killing
//所有可用的Executor
val activeExecutors = executorDataMap.filterKeys(!executorsPendingToRemove.contains(_))
//WorkOffer表示Executor上可用的资源,
val workOffers = activeExecutors.map { case (id, executorData) =>
new WorkerOffer(id, executorData.executorHost, executorData.freeCores)
}.toSeq
//先调用TaskSchedulerImpl的resourceOffers方法,为Task的运行分配资源
//再调用CoarseGrainedSchedulerBackend中的launchTasks方法启动Task的运行,最终Task被提交到Worker节点上的Executor上运行
launchTasks(scheduler.resourceOffers(workOffers))
}
上面的代码逻辑全部是在Driver端进行的,调用完launchTasks方法后,Task的执行便在Worker节点上运行了,至此完成Task的提交。
关于resourceOffers方法及launchTasks方法的具体内容,在后续章节中将进行进一步的解析。