Latent Dirichlet Allocation(LDA)主题模型算法实现及源码解析

Latent Dirichlet Allocation(LDA)主题模型算法实现及源码解析 

变量说明:
Latent Dirichlet Allocation(LDA)主题模型算法实现及源码解析_第1张图片
整个程序步骤如下图
Latent Dirichlet Allocation(LDA)主题模型算法实现及源码解析_第2张图片
代码解析
1 读入文档:
首先要读入语料库中的文档。每个文件行,开头是一个数字,代表有多少单词,接着是id:count的形式,id代表单词的id号,count代表文档中这个单词出现的次数。读入的文档集合保存在document结构体中。
typedef struct {
        int len; //文档长度
        int *id; //单词id数组
        double *cnt;//各单词出现次数数组
} document;
main()函数中打开文件:
if ((data = feature_matrix(argv[optind], &nlex, &dlenmax)) == NULL) {
        fprintf(stderr, "lda:: cannot open training data.\n");
        exit(1);
}
2 调用lda_learn开始学习
void lda_learn (document *data, double *alpha, double **beta,
        int nclass,
        int nlex //单词列表长度,
        int dlenmax//文档最大长度,
        int emmax //最大迭代次数,
        int demmax //inference迭代次数,
        double epsilon //收敛阈值
{ ……     }
1)首先随机规范初始化alpha,规范初始化beta.规范化也就是使得行或列之和为1
for (i = 0; i < nclass; i++)
        alpha[i] = RANDOM;
for (i = 0, z = 0; i < nclass; i++)
        z += alpha[i];
for (i = 0; i < nclass; i++)
        alpha[i] = alpha[i] / z;
qsort(alpha, nclass, sizeof(double), // 为alpha排序
        (int (*)(const void *, const void *))doublecmp);
//初始化beta
for (i = 0; i < nlex; i++)
        for (j = 0; j < nclass; j++)
                beta[i][j] = (double) 1 / nlex;
2)初始化充分统计量,variational inference中需要用到的变量等
gammas和betas相当于gamma和beta的和,gamma和beta代表的是某一个文档,而gammas和betas代表的是所有文档
if ((gammas = dmatrix(n, nclass)) == NULL) {
        fprintf(stderr, "lda_learn:: cannot allocate gammas.\n");
        return;
}
if ((betas = dmatrix(nlex, nclass)) == NULL) {
        fprintf(stderr, "lda_learn:: cannot allocate betas.\n");
        return;
}
//initialize buffers
if ((q = dmatrix(dlenmax, nclass)) == NULL) {
        fprintf(stderr, "lda_learn:: cannot allocate q.\n");
        return;
}
if ((gamma = (double *)calloc(nclass, sizeof(double))) == NULL)
{
        fprintf(stderr, "lda_learn:: cannot allocate gamma.\n");
        return;
}
if ((ap = (double *)calloc(nclass, sizeof(double))) == NULL) {
        fprintf(stderr, "lda_learn:: cannot allocate ap.\n");
        return;
}
if ((nt = (double *)calloc(nclass, sizeof(double))) == NULL) {
        fprintf(stderr, "lda_learn:: cannot allocate nt.\n");
        return;
}
if ((pnt = (double*)calloc(nclass, sizeof(double))) == NULL) {
        fprintf(stderr, "lda_learn:: cannot allocate pnt.\n");
        return;
}
3)开始EM迭代,如果迭代次数超过设定值则跳出
for (t = 0; t < emmax; t++)
{
       printf("iteration %d/%d..\t", t + 1, emmax);
       fflush(stdout);
       //VB-E step
       
       for (dp = data, i = 0; (dp->len) != -1; dp++, i++)
       {       
              vbem(dp, gamma, q, nt, pnt, ap,alpha, 
                       (const double **)beta, dp->len, nclass, demmax);
//需要把得到的gamma和phi(变量q)的值累加到gammas和betas中,因为gamma和beta代表的只是其中一个文档,而gammas和betas代表的是所有文档,用来对alpha和beta进行参数估计
              accum_gammas(gammas, gamma, i, nclass);
              accum_betas(betas, q, nclass, dp);
        }
        //VB-M step
        
        //对beta的估计实际上就是规范化的一个过程,而对alpha的估计是使用牛顿迭代法的一个过程
        newton_alpha(alpha, gammas, n, nclass, 0);
       
        //规范化矩阵的列,也就是求列的和,然后每个元素除以该和
       normalize_matrix_col(beta, betas, nlex, nclass);
4)计算似然函数,判断是否收敛
      lik = lda_lik(data, beta, gammas, n, nclass);

参考来源:
http://blog.sina.com.cn/s/blog_8eee7fb60101d06p.html

你可能感兴趣的:(Latent Dirichlet Allocation(LDA)主题模型算法实现及源码解析)