% ========================================================================= % 3D Zernike 函数计算 % ========================================================================= % By Gu Jinjin 2013/09/01 - 08 程序为原创,转载请声明 %------ 参数解释 ------ %{ Input args: n 表示3D Zernike矩的具体阶 l 表示重复度(球函数的阶), n-l 为偶数,且 0 =< l <= n m (球函数的重复度), -l =< m <= l X 单坐标列向量,表示单位球(US)中x的值 Y,Z 同上 Output args: Z_nlm n阶3D Zernike 多项式的值 %} %====================================== % 主函数 %====================================== % function [Z_nlm] = zernikeFunction(n,l,m,X,Y,Z) if nargin == 6 % 思想来源于文章 Precipitate shape fitting and reconstruction by means of 3D Zernike functions v_up = (n-l)/2; u_up = fix((l-m)/2); v_sum = 0; for v=0:v_up q_nlv = calculateQ_klv(v_up,l,v); u_sum = 0; for u = 0:u_up u_p1 = (-1)^(m+u)/2^(m+2*u)*combin(l,u)*combin(l-u,m+u); a_sum = 0; for a = 0:m k_sum = 0; for k=0:v b_sum = 0; for b = 0:k+u b_sum = b_sum + combin(k+u,b).*X.^(2*b+a).*Y.^(2*(k+u-b)+m-a).*Z.^(2*(v-k-u)+l-m); end k_sum = k_sum + combin(v,k).*b_sum; end a_sum = a_sum + i^(m-a)*combin(m,a).*k_sum; end u_sum = u_sum+u_p1.*a_sum; end v_sum = v_sum + q_nlv.*u_sum; end Z_nlm = calculateC_lm(l,m).*v_sum; % 思想来源于文章 3DZernike Descriptor for Content Based Shape Retrieval % 6重求和计算,但重构有问题,因为论文公式表示 存在印刷错误 %{ k = (n-l)/2; mu_up = fix((l-m)/2); V_sum = 0; for V=0:k q_klV = calculateQ_klv(k,l,V); a_sum = 0; for a=0:V b_sum = 0; for b=0:V-a u_sum = 0; for u=0:m mu_sum = 0; for mu=0:mu_up v_sum = 0; for v=0:mu v_sum = v_sum+combin(mu,v).*X.^(2*(v+a)+u).*Y.^(2*(mu-v+b)+m-u).*Z.^(2*(V-a-b-mu)+l-m); end mu_sum = mu_sum+(-1)^mu*2^(-2*mu)*combin(l,mu)*combin(l-mu,m+mu).*v_sum; end u_sum = u_sum+(-1)^(m-u)*combin(m,u)*i^u.*mu_sum; end b_sum = b_sum+combin(V-a,b).*u_sum; end a_sum = a_sum+combin(V,a).*b_sum; end V_sum = V_sum+q_klV.*a_sum; end Z_nlm = 2^(-m)*calculateC_lm(l,m).*V_sum; %} else disp 'Wrong Input Args: No Img Info!' end %====================================== % 计算 C_lm 的值 %====================================== function [c_lm] = calculateC_lm(l,m) %den = 2*sqrt(pi)*fac(l); % 分母 den = fac(l); t = (2*l+1).*fac(l+m).*fac(l-m); num = sqrt(t); % 分子 c_lm = num./den; return; %====================================== % 计算 Q_klv 的值 %====================================== function [q_klv] = calculateQ_klv(k,l,v) p1 = (-1)^k/(2^(2*k)); p2 = sqrt((2*l+4*k+3)/3); p3 = combin(2*k,k)*(-1)^v; p4 = combin(k,v)*combin(2*(k+l+v)+1,2*k)/combin(k+l+v,k); q_klv = p1*p2*p3*p4; return; %====================================== % 计算组合数 - Combinatorial %====================================== % fac(n)/((fac(n-m)*fac(m)) function [combin] = combin(n,m) num = fac(n); den = fac(n-m).*fac(m); combin = num./den; return; %====================================== % 求解n! - factorial %====================================== % n可以为数,向量或者矩阵 function [factorial] = fac(n) max_n = max(max(n)); zeros_n = find(n<=0); % 找到n中小于或者等于0的元素位置 n(zeros_n) = ones(size(zeros_n)); factorial = n; n_1 = n; % 保证n-1次乘法,1乘以任何数皆为1,所以不需要计算 for k= max_n:-1:2 cand = find(n_1>2); % 这里 1,2的阶乘皆为其本身,所以不需要计算 n_1(cand) = n_1(cand) - 1; factorial(cand) = factorial(cand).*n_1(cand); end return;