简单的Int容器类

简单的Int容器类

from http://www.learncpp.com/cpp-tutorial/104-container-classes/

   1: #ifndef INTARRAY_H
   2: #define INTARRAY_H
   3:  
   4: #include <assert.h> // for assert()
   5:  
   6: class IntArray
   7: {
   8: private:
   9:     int m_nLength;
  10:     int *m_pnData;
  11:  
  12: public:
  13:     IntArray()
  14:     {
  15:         m_nLength = 0;
  16:         m_pnData = 0;
  17:     }
  18:  
  19:     IntArray(int nLength)
  20:     {
  21:         m_pnData = new int[nLength];
  22:         m_nLength = nLength;
  23:     }
  24:  
  25:     ~IntArray()
  26:     {
  27:         delete[] m_pnData;
  28:     }
  29:  
  30:     void Erase()
  31:     {
  32:         delete[] m_pnData;
  33:         // We need to make sure we set m_pnData to 0 here, otherwise it will
  34:         // be left pointing at deallocated memory!
  35:         m_pnData = 0;
  36:         m_nLength = 0;
  37:     }
  38:  
  39:     int& operator[](int nIndex)
  40:     {
  41:         assert(nIndex >= 0 && nIndex < m_nLength);
  42:         return m_pnData[nIndex];
  43:     }
  44:  
  45:     // Reallocate resizes the array.  Any existing elements will be destroyed.
  46:     // This function operates quickly.
  47:     void Reallocate(int nNewLength)
  48:     {
  49:         // First we delete any existing elements
  50:         Erase();
  51:  
  52:         // If our array is going to be empty now, return here
  53:         if (nNewLength<= 0)
  54:             return;
  55:  
  56:         // Then we have to allocate new elements
  57:         m_pnData = new int[nNewLength];
  58:         m_nLength = nNewLength;
  59:     }
  60:  
  61:     // Resize resizes the array.  Any existing elements will be kept.
  62:     // This function operates slowly.
  63:     void Resize(int nNewLength)
  64:     {
  65:         // If we are resizing to an empty array, do that and return
  66:         if (nNewLength <= 0)
  67:         {
  68:             Erase();
  69:             return;
  70:         }
  71:  
  72:         // Now we can assume nNewLength is at least 1 element.  This algorithm
  73:         // works as follows: First we are going to allocate a new array.  Then we
  74:         // are going to copy elements from the existing array to the new array.
  75:         // Once that is done, we can destroy the old array, and make m_pnData
  76:         // point to the new array.
  77:  
  78:         // First we have to allocate a new array
  79:         int *pnData = new int[nNewLength];
  80:  
  81:         // Then we have to figure out how many elements to copy from the existing
  82:         // array to the new array.  We want to copy as many elements as there are
  83:         // in the smaller of the two arrays.
  84:         if (m_nLength > 0)
  85:         {
  86:             int nElementsToCopy = (nNewLength > m_nLength) ? m_nLength : nNewLength;
  87:  
  88:             // Now copy the elements one by one
  89:             for (int nIndex=0; nIndex < nElementsToCopy; nIndex++)
  90:                 pnData[nIndex] = m_pnData[nIndex];
  91:         }
  92:  
  93:         // Now we can delete the old array because we don't need it any more
  94:         delete[] m_pnData;
  95:  
  96:         // And use the new array instead!  Note that this simply makes m_pnData point
  97:         // to the same address as the new array we dynamically allocated.  Because
  98:         // pnData was dynamically allocated, it won't be destroyed when it goes out of scope.
  99:         m_pnData = pnData;
 100:         m_nLength = nNewLength;
 101:     }
 102:  
 103:         void InsertBefore(int nValue, int nIndex)
 104:     {
 105:         // Sanity check our nIndex value
 106:         assert(nIndex >= 0 && nIndex <= m_nLength);
 107:  
 108:         // First create a new array one element larger than the old array
 109:         int *pnData = new int[m_nLength+1];
 110:  
 111:         // Copy all of the elements up to the index
 112:         for (int nBefore=0; nBefore < nIndex; nBefore++)
 113:             pnData[nBefore] = m_pnData[nBefore];
 114:  
 115:         // insert our new element into the new array
 116:         pnData[nIndex] = nValue;
 117:  
 118:         // Copy all of the values after the inserted element
 119:         for (int nAfter=nIndex; nAfter < m_nLength; nAfter++)
 120:             pnData[nAfter+1] = m_pnData[nAfter];
 121:  
 122:         // Finally, delete the old array, and use the new array instead
 123:         delete[] m_pnData;
 124:         m_pnData = pnData;
 125:         m_nLength += 1;
 126:     }
 127:  
 128:     void Remove(int nIndex)
 129:     {
 130:         // Sanity check our nIndex value
 131:         assert(nIndex >= 0 && nIndex < m_nLength);
 132:  
 133:         // First create a new array one element smaller than the old array
 134:         int *pnData = new int[m_nLength-1];
 135:  
 136:         // Copy all of the elements up to the index
 137:         for (int nBefore=0; nBefore < nIndex; nBefore++)
 138:             pnData[nBefore] = m_pnData[nBefore];
 139:  
 140:         // Copy all of the values after the inserted element
 141:         for (int nAfter=nIndex+1; nAfter < m_nLength; nAfter++)
 142:             pnData[nAfter-1] = m_pnData[nAfter];
 143:  
 144:         // Finally, delete the old array, and use the new array instead
 145:         delete[] m_pnData;
 146:         m_pnData = pnData;
 147:         m_nLength -= 1;
 148:     }
 149:  
 150:     // A couple of additional functions just for convenience
 151:     void InsertAtBeginning(int nValue) { InsertBefore(nValue, 0); }
 152:     void InsertAtEnd(int nValue) { InsertBefore(nValue, m_nLength); }
 153:  
 154:     int GetLength() { return m_nLength; }
 155: };
 156:  
 157: #endif
 158:  
 159: Now, let’s test it just to prove it works:
 160: 1
 161: 2
 162: 3
 163: 4
 164: 5
 165: 6
 166: 7
 167: 8
 168: 9
 169: 10
 170: 11
 171: 12
 172: 13
 173: 14
 174: 15
 175: 16
 176: 17
 177: 18
 178: 19
 179: 20
 180: 21
 181: 22
 182: 23
 183: 24
 184: 25
 185: 26
 186: 27
 187: 28
 188: 29
 189: 30
 190: 31
 191: 32
 192: 33
 193:     
 194: #include <iostream>
 195: #include "IntArray.h"
 196:  
 197: using namespace std;
 198:  
 199: int main()
 200: {
 201:     // Declare an array with 10 elements
 202:     IntArray cArray(10);
 203:  
 204:     // Fill the array with numbers 1 through 10
 205:     for (int i=0; i<10; i++)
 206:         cArray[i] = i+1;
 207:  
 208:     // Resize the array to 8 elements
 209:     cArray.Resize(8);
 210:  
 211:     // Insert the number 20 before the 5th element
 212:     cArray.InsertBefore(20, 5);
 213:  
 214:     // Remove the 3rd element
 215:     cArray.Remove(3);
 216:  
 217:     // Add 30 and 40 to the end and beginning
 218:     cArray.InsertAtEnd(30);
 219:     cArray.InsertAtBeginning(40);
 220:  
 221:     // Print out all the numbers
 222:     for (int j=0; j<cArray.GetLength(); j++)
 223:         cout << cArray[j] << " ";
 224:  
 225:     return 0;
 226: }

你可能感兴趣的:(简单的Int容器类)