scikit-learn:3. Model selection and evaluation

参考:http://scikit-learn.org/stable/model_selection.html


有待翻译,敬请期待:

  • 3.1. Cross-validation: evaluating estimator performance
  • 翻译文章参考:http://blog.csdn.net/mmc2015/article/details/47099275
    • 3.1.1. Computing cross-validated metrics
      • 3.1.1.1. Obtaining predictions by cross-validation
    • 3.1.2. Cross validation iterators
      • 3.1.2.1. K-fold
      • 3.1.2.2. Stratified k-fold
      • 3.1.2.3. Leave-One-Out - LOO
      • 3.1.2.4. Leave-P-Out - LPO
      • 3.1.2.5. Leave-One-Label-Out - LOLO
      • 3.1.2.6. Leave-P-Label-Out
      • 3.1.2.7. Random permutations cross-validation a.k.a. Shuffle & Split
      • 3.1.2.8. Predefined Fold-Splits / Validation-Sets
      • 3.1.2.9. See also
    • 3.1.3. A note on shuffling
    • 3.1.4. Cross validation and model selection
  • 3.2. Grid Search: Searching for estimator parameters
  • 翻译文章参考:http://blog.csdn.net/mmc2015/article/details/47100091
    • 3.2.1. Exhaustive Grid Search
    • 3.2.2. Randomized Parameter Optimization
    • 3.2.3. Tips for parameter search
      • 3.2.3.1. Specifying an objective metric
      • 3.2.3.2. Composite estimators and parameter spaces
      • 3.2.3.3. Model selection: development and evaluation
      • 3.2.3.4. Parallelism
      • 3.2.3.5. Robustness to failure
    • 3.2.4. Alternatives to brute force parameter search
      • 3.2.4.1. Model specific cross-validation
        • 3.2.4.1.1. sklearn.linear_model.ElasticNetCV
        • 3.2.4.1.2. sklearn.linear_model.LarsCV
        • 3.2.4.1.3. sklearn.linear_model.LassoCV
          • 3.2.4.1.3.1. Examples using sklearn.linear_model.LassoCV
        • 3.2.4.1.4. sklearn.linear_model.LassoLarsCV
          • 3.2.4.1.4.1. Examples using sklearn.linear_model.LassoLarsCV
        • 3.2.4.1.5. sklearn.linear_model.LogisticRegressionCV
        • 3.2.4.1.6. sklearn.linear_model.MultiTaskElasticNetCV
        • 3.2.4.1.7. sklearn.linear_model.MultiTaskLassoCV
        • 3.2.4.1.8. sklearn.linear_model.OrthogonalMatchingPursuitCV
          • 3.2.4.1.8.1. Examples using sklearn.linear_model.OrthogonalMatchingPursuitCV
        • 3.2.4.1.9. sklearn.linear_model.RidgeCV
          • 3.2.4.1.9.1. Examples using sklearn.linear_model.RidgeCV
        • 3.2.4.1.10. sklearn.linear_model.RidgeClassifierCV
      • 3.2.4.2. Information Criterion
        • 3.2.4.2.1. sklearn.linear_model.LassoLarsIC
          • 3.2.4.2.1.1. Examples using sklearn.linear_model.LassoLarsIC
      • 3.2.4.3. Out of Bag Estimates
        • 3.2.4.3.1. sklearn.ensemble.RandomForestClassifier
          • 3.2.4.3.1.1. Examples using sklearn.ensemble.RandomForestClassifier
        • 3.2.4.3.2. sklearn.ensemble.RandomForestRegressor
          • 3.2.4.3.2.1. Examples using sklearn.ensemble.RandomForestRegressor
        • 3.2.4.3.3. sklearn.ensemble.ExtraTreesClassifier
          • 3.2.4.3.3.1. Examples using sklearn.ensemble.ExtraTreesClassifier
        • 3.2.4.3.4. sklearn.ensemble.ExtraTreesRegressor
          • 3.2.4.3.4.1. Examples using sklearn.ensemble.ExtraTreesRegressor
        • 3.2.4.3.5. sklearn.ensemble.GradientBoostingClassifier
          • 3.2.4.3.5.1. Examples using sklearn.ensemble.GradientBoostingClassifier
        • 3.2.4.3.6. sklearn.ensemble.GradientBoostingRegressor
          • 3.2.4.3.6.1. Examples using sklearn.ensemble.GradientBoostingRegressor
  • 3.3. Model evaluation: quantifying the quality of predictions
  • 翻译文章参考:http://blog.csdn.net/mmc2015/article/details/47121611
    • 3.3.1. The scoring parameter: defining model evaluation rules
      • 3.3.1.1. Common cases: predefined values
      • 3.3.1.2. Defining your scoring strategy from metric functions
      • 3.3.1.3. Implementing your own scoring object
    • 3.3.2. Classification metrics
      • 3.3.2.1. From binary to multiclass and multilabel
      • 3.3.2.2. Accuracy score
      • 3.3.2.3. Confusion matrix
      • 3.3.2.4. Classification report
      • 3.3.2.5. Hamming loss
      • 3.3.2.6. Jaccard similarity coefficient score
      • 3.3.2.7. Precision, recall and F-measures
        • 3.3.2.7.1. Binary classification
        • 3.3.2.7.2. Multiclass and multilabel classification
      • 3.3.2.8. Hinge loss
      • 3.3.2.9. Log loss
      • 3.3.2.10. Matthews correlation coefficient
      • 3.3.2.11. Receiver operating characteristic (ROC)
      • 3.3.2.12. Zero one loss
    • 3.3.3. Multilabel ranking metrics
      • 3.3.3.1. Coverage error
      • 3.3.3.2. Label ranking average precision
    • 3.3.4. Regression metrics
      • 3.3.4.1. Explained variance score
      • 3.3.4.2. Mean absolute error
      • 3.3.4.3. Mean squared error
      • 3.3.4.4. Median absolute error
      • 3.3.4.5. R² score, the coefficient of determination
    • 3.3.5. Clustering metrics
    • 3.3.6. Dummy estimators
  • 3.4. Model persistence
  • 翻译文章参考:http://blog.csdn.net/mmc2015/article/details/47143539
    • 3.4.1. Persistence example
    • 3.4.2. Security & maintainability limitations
  • 3.5. Validation curves: plotting scores to evaluate models
  • 翻译文章参考:http://blog.csdn.net/mmc2015/article/details/47144197
    • 3.5.1. Validation curve
    • 3.5.2. Learning curve

你可能感兴趣的:(scikit-learn,模型筛选,模型评估)