- 什么是AI大模型?常见的AI大模型有哪些?
AI产品经理
人工智能机器学习深度学习自然语言处理gpt
什么是AI大模型?在人工智能领域,"AI大模型"的官方概念通常指的是具有大量参数的机器学习模型,这些模型能够捕捉和学习数据中的复杂模式。参数是模型中的变量,它们在训练过程中不断调整,以便模型能够更准确地进行预测或分类任务。AI大模型通常具有以下特点:高参数量:AI大模型含有数百万甚至数十亿的参数,这使得它们能够学习和记忆大量信息。深度学习架构:它们通常基于深度学习架构,如卷积神经网络(CNNs)用
- 汽车LIN总线技术入门手册中文版
红廉骑士兽
本文还有配套的精品资源,点击获取简介:LIN总线是一种用于汽车电子系统的通信协议,主要用于车辆内的简单控制任务。通过支持低成本、简单架构、低数据速率和灵活性等特征,它已成为汽车零部件开发中的关键组成部分。LIN2.1版本进一步提高了效率和兼容性,增加了从节点数量和数据携带能力。本手册详细介绍了LIN总线的物理层、协议层和应用层,并且阐述了LIN2.1的改进特性,是汽车电子开发者入门LIN总线技术的
- 《Python机器学习基础教程》第十二章计算机视觉基础12.8 深度解析:目标检测算法(R-CNN、Fast R-CNN、Faster R-CNN、YOLO和SSD)及其应用场景
精通代码大仙
机器学习python机器学习开发语言
12.8深度解析:目标检测算法(R-CNN、FastR-CNN、FasterR-CNN、YOLO和SSD)及其应用场景12.8目标检测12.8.1目标检测的基本概念12.8.2R-CNN12.8.3FastR-CNN12.8.4FasterR-CNN12.8.5YOLO12.8.6SSD12.8.7实操代码示例12.8.7.1使用R-CNN进行目标检测12.8.7.2使用FastR-CNN进行目标
- 写一个新的Python微信机器人
程序员
前言之前写的Python微信机器人系列,看数据倒是有一些人关注,交流群也有两百多人,但是真正使用的没几个,而会去看文章学习原理的没有一个。Python其实并不适合做hook,注入Python去实现hook和主动调用甚至都不如frida,因为注入特征太明显,Python会将所有的dll都会加载到目标进程,而frida只会加载一个dll到目标进程。当然,注入Python在实现和写代码上是比frida要
- 《Python实战进阶》第38集:机器学习模型优化与调参——Grid Search 与 Hyperopt
带娃的IT创业者
Python实战进阶python机器学习开发语言
第38集:机器学习模型优化与调参——GridSearch与Hyperopt摘要在机器学习项目中,超参数的设置对模型性能至关重要。本集聚焦于如何通过网格搜索(GridSearch)和Hyperopt这两种超参数优化方法,提升模型的性能。我们将从理论入手,介绍超参数搜索的核心概念,并通过两个对比实战案例展示如何使用这两种方法优化支持向量机(SVM)和XGBoost模型。最后,我们还将探讨自动化调参工具
- 《Python实战进阶》第39集:模型部署——TensorFlow Serving 与 ONNX
带娃的IT创业者
Python实战进阶pythontensorflowneo4j
第39集:模型部署——TensorFlowServing与ONNX摘要在机器学习项目中,训练好的模型需要被部署到生产环境中才能发挥实际价值。本集聚焦于如何将模型高效地部署到生产环境,涵盖TensorFlowServing和ONNX两种主流工具的使用方法。我们将从理论入手,介绍模型部署的核心概念,并通过实战案例展示如何使用TensorFlowServing部署图像分类模型,以及如何利用ONNX实现跨
- 信息系统项目管理师必背核心考点(六十八)数字证书、数字签名
qiangge2015
信息系统项目管理师软考软考高级科科过信息系统项目管理师信息系统项目管理师考点信息系统项目管理师培训信息系统项目管理师数字证书数字签名
科科过为您带来软考信息系统项目管理师核心重点考点(六十八)数字证书、数字签名和CA认证中心,内含思维导图+真题【信息系统项目管理师核心考点】数字证书1.具有不可抵赖性的特征(一段电子文档)2.包含信息:①版本号②序列号③签名算法标识符④认证机构⑤有效期限⑥主题信息⑦认证机构的数字签名⑧公钥信息【信息系统项目管理师核心考点】数字签名防止信息抵赖(发送者的私钥加密)【信息系统项目管理师核心考点】CA认
- 关于matlab和python谁快的问题
小蜗笔记
matlab学习笔记matlabpython算法
关于matlab和python谁快的问题,python比matlab在乘法上快10倍,指数计算快4倍,加减运算持平,略慢于matlab。或许matlab只适合求解特征值。importtorchimporttimen=50000#矩阵规模M=torch.rand(n,31)start_time=time.time()F_M=torch.exp(M)#将矩阵M映射到其指数值end_time=time.
- 自动化与智能化的认知差异
人机与认知实验室
自动化人工智能运维
从认知心理学的角度对自动化和智能化进行了区分,我们可以从同化、顺应、平衡、图式方面来理解:一、自动化与图式及同化(1)图式是认知心理学中的一个重要概念,指个体对世界的知觉经验和理解方式,是个体过去经验的总和。例如,当我们看到一只狗时,我们会根据以往对狗的认知图式,知道它是一种动物,有毛发、会叫等特征。(2)同化是个体将新的信息或经验纳入到已有的图式或认知结构中,以保持认知的平衡和稳定。例如,当我们
- 机器学习中使用Seaborn绘制KDE核密度估计曲线
闵少搞AI
人工智能机器学习人工智能算法
核密度估计图(KDE)核密度估计(KDE)图,一种可视化技术,提供连续变量概率密度的详细视图。在本文中,我们将使用IrisDataset和KDEPlot来可视化数据集。在机器学习中,核密度估计(KDE)不仅用于可视化数据分布,还被用作一种非参数方法来估计数据的概率密度函数。这在特征工程、异常检测、生成模型等领域中有重要应用。核密度估计在机器学习中的应用特征工程:通过KDE可以理解特征的分布情况,从
- SVM算法练习
dedsec0x
支持向量机算法机器学习
目录一、前言二、使用libSVM②libsvm实现模型训练并写出决策函数的数学公式三、参考文章一、前言libSVM简介LIBSVM是台湾大学林智仁(LinChih-Jen)教授等开发设计的一个简单、易于使用和快速有效的SVM模式识别与回归的软件包,他不但提供了编译好的可在Windows系列系统的执行文件,还提供了源代码,方便改进、修改以及在其它操作系统上应用;该软件对SVM所涉及的参数调节相对比较
- 滤波---概览
MzKyle
滤波
滤波的定义与核心作用滤波是信号处理中的核心技术,指通过特定装置或算法从信号中提取有用成分(如目标频率、特定时间特征),同时抑制或滤除无用成分(如噪声、干扰)的过程。其本质是通过频率选择或时间选择实现信号分离。其核心目标是:噪声抑制:分离信号与噪声频带选择:提取感兴趣的频率成分信号重构:恢复被干扰的原始信号特征提取:突出信号的特定特征滤波技术广泛应用于通信系统(如调制解调)、生物医学工程(如心电图滤
- 多层感知机(MLP)全面指南
MobiCetus
强化学习开发语言java算法c++pythoneclipsegithub
多层感知机(MLP)是一种人工神经网络,由多个神经元层组成。MLP中的神经元通常使用非线性激活函数,使得网络能够学习数据中的复杂模式。MLP在机器学习中非常重要,因为它能够学习数据中的非线性关系,使其成为分类、回归和模式识别等任务中的强大模型。神经网络基础神经网络或人工神经网络是机器学习中的基本工具,支持着许多最先进的算法和应用,广泛应用于计算机视觉、自然语言处理、机器人技术等领域。一个神经网络由
- (4)绪论三:归纳偏好
在下_诸葛
《机器学习》算法机器学习数据挖掘
通过学习得到的一个模型对应了假设空间的一个假设(这是上节假设空间的内容)归纳偏好或偏好:机器学习算法在学习过程中对某种类型假设的偏好(对于一个新西瓜来说:让一个训练好的模型来判断它为好瓜还是坏瓜?可以根据某种特征判断它为好瓜,也可以根据另外一种特征判断它为坏瓜,归纳偏好就是看哪一个特征更为重要,从而根据比例将新西瓜进行分类)如果没要偏好,说明两种特征都一样重要,这时模型对新西瓜的预测,时而判断它是
- 一文彻底搞懂CNN - 卷积和池化(Convolution And Pooling)
喝不喝奶茶丫
cnn深度学习神经网络人工智能语言模型大模型CNN
ConvolutionalNeuralNetworkCNN(卷积神经网络)最核心的两大操作就是卷积(Convolution)和池化(Pooling)。卷积用于特征提取,通过卷积核在输入数据上滑动计算加权和;池化用于特征降维,通过聚合统计池化窗口内的元素来减少数据空间大小。ConvolutionAndPooling一、_卷积(Convolution)卷积(Convolution):卷积是一种数学运算
- 毕设成品 基于机器学习的乳腺癌数据分析
m0_71572237
毕业设计python毕设
文章目录0简介模型评估KNNClassifierLogisticRegressionClassifierRandomForestClassifierDecisionTreeClassifierGBDT(GradientBoostingDecisionTree)ClassifierAdaBoostBaggingSVM最后0简介今天学长向大家分享一个毕业设计项目毕业设计基于机器学习的乳腺癌数据分析项目
- 【AI大模型系列】DeepSeek V3的混合专家模型机制-MoE架构(八)
morning_judger
AI大模型系列架构人工智能
一、什么是MoE架构MoE架构的核心思想是将输入数据分配给不同的专家子模型,然后将所有子模型的输出进行合并,以生成最终结果。这种分配可以根据输入数据的特征进行动态调整,确保每个专家处理其最擅长的数据类型或任务方面,从而实现更高效、准确的预测。二、MoE架构的运行机制MoE架构包含以下3个重要组成部分:门控网络/路由器、专家、输出聚合门控网络(GatingNetwork)/路由器(Router):门
- 【数据可视化应用】绘制类别插值地图(附Python代码)
文宇肃然
可视化工具数据分析实战应用python机器学习sklearn
sklearn.KNeighborsClassifier()终于这篇推文将机器学习和可视化完美的结合起来,即:机器学习处理数据,数据可视化技术展现、美化数据(以后的深度学习部分也会延续这个风格,只不过比重不同而已)。首先,我们给出我们今天的数据:散点数据和四川省的地图文件,python读取操作如下:import pandas as pdimport numpy as npfrom sklearn.
- 用Python打造智能宠物:强化学习的奇妙之旅
Echo_Wish
Python笔记Python算法python宠物人工智能
友友们好!我是Echo_Wish,我的的新专栏《Python进阶》以及《Python!实战!》正式启动啦!这是专为那些渴望提升Python技能的朋友们量身打造的专栏,无论你是已经有一定基础的开发者,还是希望深入挖掘Python潜力的爱好者,这里都将是你不可错过的宝藏。在这个专栏中,你将会找到:●深入解析:每一篇文章都将深入剖析Python的高级概念和应用,包括但不限于数据分析、机器学习、Web开发
- Python 实战:手语翻译系统——从视频到文本的智能转换
Echo_Wish
Python笔记Python算法从零开始学Python人工智能python音视频开发语言
友友们好!我是Echo_Wish,我的的新专栏《Python进阶》以及《Python!实战!》正式启动啦!这是专为那些渴望提升Python技能的朋友们量身打造的专栏,无论你是已经有一定基础的开发者,还是希望深入挖掘Python潜力的爱好者,这里都将是你不可错过的宝藏。在这个专栏中,你将会找到:●深入解析:每一篇文章都将深入剖析Python的高级概念和应用,包括但不限于数据分析、机器学习、Web开发
- 精准画像(Fine-Grained Profiling)
dundunmm
数据挖掘人工智能数据挖掘人工智能深度学习画像精准画像
精准画像是一种基于大数据、人工智能和机器学习技术的个性化建模方法,通过整合多源数据,深度挖掘个体或群体的特征,从而精准刻画用户(如学生、客户、员工等)的行为模式、兴趣偏好、能力水平及发展趋势。精准画像广泛应用于教育、金融、医疗、电商、智能推荐等领域。1.精准画像的核心要素精准画像通常包括以下核心要素:(1)多源数据融合:精准画像依赖于多模态数据,如行为数据(点击、浏览、购买、学习记录)、生理数据(
- 人工智能之数学基础:基于正交变换将矩阵对角化
每天五分钟玩转人工智能
机器学习深度学习之数学基础人工智能矩阵线性代数正交变换矩阵对角化机器学习
本文重点如果矩阵A的特征向量构成的矩阵P可逆,那么矩阵A是一定可以被对角化的。但是如果矩阵P不可逆,那么是一定不可以被对角化的。我们前面还学过了如果一个矩阵A是实对称矩阵,那么这个矩阵是一定可以被对角化的,我们可以通过一个正交矩阵(正交矩阵一定是可逆的)将矩阵A对角化,现在的问题是如何找到这个正交矩阵来完成对实对称矩阵A的对角化?实对称矩阵的对角化实对称矩阵的特征值都是实数,实对称矩阵的对应于不同
- 正则化是什么?
点我头像干啥
Ai人工智能神经网络深度学习
正则化(Regularization)是机器学习中用于防止模型过拟合(Overfitting)的一种技术,通过在模型训练过程中引入额外的约束或惩罚项,降低模型的复杂度,从而提高其泛化能力(即在未见数据上的表现)。核心思想是在拟合训练数据和控制模型复杂度之间取得平衡。一、常见的正则化方法1.L1正则化(Lasso回归)在损失函数中添加模型权重(参数)的L1范数(绝对值之和)作为惩罚项。特点:会倾向于
- Windows 7 下 TensorFlow 安装入门(PyCharm 版)
架构魔术
windowstensorflowpycharm编程
Windows7下TensorFlow安装入门(PyCharm版)TensorFlow是一个流行的开源机器学习框架,广泛应用于深度学习和人工智能领域。本文将指导您在Windows7操作系统上使用PyCharm安装和配置TensorFlow。以下是详细的步骤和相应的源代码。步骤1:安装Python首先,您需要安装Python。TensorFlow支持Python3.5-3.8版本。您可以从Pytho
- 50G的高光谱数据+40个真实项目案例(涵盖城市、植被、水体、地质、土壤五大领域)
weixin_贾
地理遥感生态模型高光谱数据图像预处理无人机多光谱数据城市案例研究混合像元分解
本内容通过模块化设计与真实案例结合,基于Python编程入门到DeepSeek工具,把高光谱领域的全部内容都纳进来,包括辐射校正、几何校正、大气校正、光谱预处理、降维、特征提取、混合像元分解、地物分类与识别、目标检测与变化检测等都纳入本内容,覆盖全面,循序渐进。通过城市目标识别、植被指数计算、水质参数反演、地质找矿、土壤混合像元分解等多元场景的实战演练,您将掌握高光谱遥感的核心技术,并能够灵活运用
- 机器学习周报第39周
Ramos_zl
机器学习人工智能
一、文献阅读论文标题:ObjectDetectioninVideosbyHighQualityObjectLinking1.1摘要与静态图像中的目标检测相比,视频中的目标检测由于图像质量下降而更具挑战性。许多以前的方法都通过链接视频中的相同对象以形成管状结构,并在管状结构中聚合分类得分,从而利用时间上下文信息。这些方法首先使用静态图像检测器来检测每帧中的对象,然后根据不同帧中对象框之间的空间重叠情
- 【网络安全】AWS S3 Bucket配置错误导致敏感信息泄露
秋说
web安全aws漏洞挖掘
未经许可,不得转载。文章目录前言技术分析正文前言AWS(AmazonWebServices)是亚马逊公司提供的一个安全的云服务平台,旨在为个人、公司和政府机构提供计算能力、存储解决方案、内容交付和其他功能。作为全球领先的云服务提供商之一,AWS提供了广泛的云计算服务,包括计算、存储、数据库、机器学习、人工智能、分析和互联网应用等多个领域的服务。AmazonS3(AmazonSimpleStorag
- VectorBT:使用PyTorch+LSTM训练和回测股票模型 进阶三
船长@Quant
Python金融科技pythonpytorchlstmsklearn量化策略量化回测深度学习
VectorBT:使用PyTorch+LSTM训练和回测股票模型进阶三本方案融合LSTM时序预测与动态风险控制。系统采用混合架构,离线训练构建多尺度特征工程和双均线策略,结合在线增量更新持续优化模型。技术要点包括三层特征筛选、波动率动态仓位管理、混合精度训练提升效率,以及用VectorBT验证收益。文中内容仅限技术学习与代码实践参考,市场存在不确定性,技术分析需谨慎验证,不构成任何投资建议。适合量
- 代码随想录算法训练营第二天 | 209.长度最小的子数组 59.螺旋矩阵Ⅱ
decode12
算法矩阵
LeetCode209.长度最小的子数组:文章链接题目链接:209.长度最小的子数组看到题目后自己的思考题目所求为长度最小的子数组,且子数组中的元素在原数组中应该是相邻的。基于相邻这个特征和Carl中说可以用滑动窗口。我采取的方法是改变滑动窗口大小,其范围为1~len(list)。双重循环来进行求解。第一层为滑动窗口大小,第二层为根据滑动窗口获取子数组,并判断子数组总和是否>=target。一旦找
- Data+AI下湖仓一体到底有什么价值?
大数据AI智能圈
大数据人工智能人工智能大数据数据仓库数据治理数据湖
Data+AI下湖仓一体到底有什么价值?前言什么是湖仓一体?为什么企业需要湖仓一体?湖仓一体解决的实际痛点及其价值数据孤岛问题:打破信息壁垒数据治理和质量控制的挑战实时分析与高效存储:兼得不是难题降本增效:减少架构复杂性,提升运营效率支持AI与机器学习的全面落地企业实践与收益分析某电商平台的智能推荐系统某金融机构的风险控制体系某制造企业的供应链优化湖仓一体的综合效益结语前言湖仓一体到底是什么?对不
- web前段跨域nginx代理配置
刘正强
nginxcmsWeb
nginx代理配置可参考server部分
server {
listen 80;
server_name localhost;
- spring学习笔记
caoyong
spring
一、概述
a>、核心技术 : IOC与AOP
b>、开发为什么需要面向接口而不是实现
接口降低一个组件与整个系统的藕合程度,当该组件不满足系统需求时,可以很容易的将该组件从系统中替换掉,而不会对整个系统产生大的影响
c>、面向接口编口编程的难点在于如何对接口进行初始化,(使用工厂设计模式)
- Eclipse打开workspace提示工作空间不可用
0624chenhong
eclipse
做项目的时候,难免会用到整个团队的代码,或者上一任同事创建的workspace,
1.电脑切换账号后,Eclipse打开时,会提示Eclipse对应的目录锁定,无法访问,根据提示,找到对应目录,G:\eclipse\configuration\org.eclipse.osgi\.manager,其中文件.fileTableLock提示被锁定。
解决办法,删掉.fileTableLock文件,重
- Javascript 面向对面写法的必要性?
一炮送你回车库
JavaScript
现在Javascript面向对象的方式来写页面很流行,什么纯javascript的mvc框架都出来了:ember
这是javascript层的mvc框架哦,不是j2ee的mvc框架
我想说的是,javascript本来就不是一门面向对象的语言,用它写出来的面向对象的程序,本身就有些别扭,很多人提到js的面向对象首先提的是:复用性。那么我请问你写的js里有多少是可以复用的,用fu
- js array对象的迭代方法
换个号韩国红果果
array
1.forEach 该方法接受一个函数作为参数, 对数组中的每个元素
使用该函数 return 语句失效
function square(num) {
print(num, num * num);
}
var nums = [1,2,3,4,5,6,7,8,9,10];
nums.forEach(square);
2.every 该方法接受一个返回值为布尔类型
- 对Hibernate缓存机制的理解
归来朝歌
session一级缓存对象持久化
在hibernate中session一级缓存机制中,有这么一种情况:
问题描述:我需要new一个对象,对它的几个字段赋值,但是有一些属性并没有进行赋值,然后调用
session.save()方法,在提交事务后,会出现这样的情况:
1:在数据库中有默认属性的字段的值为空
2:既然是持久化对象,为什么在最后对象拿不到默认属性的值?
通过调试后解决方案如下:
对于问题一,如你在数据库里设置了
- WebService调用错误合集
darkranger
webservice
Java.Lang.NoClassDefFoundError: Org/Apache/Commons/Discovery/Tools/DiscoverSingleton
调用接口出错,
一个简单的WebService
import org.apache.axis.client.Call;import org.apache.axis.client.Service;
首先必不可
- JSP和Servlet的中文乱码处理
aijuans
Java Web
JSP和Servlet的中文乱码处理
前几天学习了JSP和Servlet中有关中文乱码的一些问题,写成了博客,今天进行更新一下。应该是可以解决日常的乱码问题了。现在作以下总结希望对需要的人有所帮助。我也是刚学,所以有不足之处希望谅解。
一、表单提交时出现乱码:
在进行表单提交的时候,经常提交一些中文,自然就避免不了出现中文乱码的情况,对于表单来说有两种提交方式:get和post提交方式。所以
- 面试经典六问
atongyeye
工作面试
题记:因为我不善沟通,所以在面试中经常碰壁,看了网上太多面试宝典,基本上不太靠谱。只好自己总结,并试着根据最近工作情况完成个人答案。以备不时之需。
以下是人事了解应聘者情况的最典型的六个问题:
1 简单自我介绍
关于这个问题,主要为了弄清两件事,一是了解应聘者的背景,二是应聘者将这些背景信息组织成合适语言的能力。
我的回答:(针对技术面试回答,如果是人事面试,可以就掌
- contentResolver.query()参数详解
百合不是茶
androidquery()详解
收藏csdn的博客,介绍的比较详细,新手值得一看 1.获取联系人姓名
一个简单的例子,这个函数获取设备上所有的联系人ID和联系人NAME。
[java]
view plain
copy
public void fetchAllContacts() {
- ora-00054:resource busy and acquire with nowait specified解决方法
bijian1013
oracle数据库killnowait
当某个数据库用户在数据库中插入、更新、删除一个表的数据,或者增加一个表的主键时或者表的索引时,常常会出现ora-00054:resource busy and acquire with nowait specified这样的错误。主要是因为有事务正在执行(或者事务已经被锁),所有导致执行不成功。
1.下面的语句
- web 开发乱码
征客丶
springWeb
以下前端都是 utf-8 字符集编码
一、后台接收
1.1、 get 请求乱码
get 请求中,请求参数在请求头中;
乱码解决方法:
a、通过在web 服务器中配置编码格式:tomcat 中,在 Connector 中添加URIEncoding="UTF-8";
1.2、post 请求乱码
post 请求中,请求参数分两部份,
1.2.1、url?参数,
- 【Spark十六】: Spark SQL第二部分数据源和注册表的几种方式
bit1129
spark
Spark SQL数据源和表的Schema
case class
apply schema
parquet
json
JSON数据源 准备源数据
{"name":"Jack", "age": 12, "addr":{"city":"beijing&
- JVM学习之:调优总结 -Xms -Xmx -Xmn -Xss
BlueSkator
-Xss-Xmn-Xms-Xmx
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。典型设置:
java -Xmx355
- jqGrid 各种参数 详解(转帖)
BreakingBad
jqGrid
jqGrid 各种参数 详解 分类:
源代码分享
个人随笔请勿参考
解决开发问题 2012-05-09 20:29 84282人阅读
评论(22)
收藏
举报
jquery
服务器
parameters
function
ajax
string
- 读《研磨设计模式》-代码笔记-代理模式-Proxy
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;
/*
* 下面
- 应用升级iOS8中遇到的一些问题
chenhbc
ios8升级iOS8
1、很奇怪的问题,登录界面,有一个判断,如果不存在某个值,则跳转到设置界面,ios8之前的系统都可以正常跳转,iOS8中代码已经执行到下一个界面了,但界面并没有跳转过去,而且这个值如果设置过的话,也是可以正常跳转过去的,这个问题纠结了两天多,之前的判断我是在
-(void)viewWillAppear:(BOOL)animated
中写的,最终的解决办法是把判断写在
-(void
- 工作流与自组织的关系?
comsci
设计模式工作
目前的工作流系统中的节点及其相互之间的连接是事先根据管理的实际需要而绘制好的,这种固定的模式在实际的运用中会受到很多限制,特别是节点之间的依存关系是固定的,节点的处理不考虑到流程整体的运行情况,细节和整体间的关系是脱节的,那么我们提出一个新的观点,一个流程是否可以通过节点的自组织运动来自动生成呢?这种流程有什么实际意义呢?
这里有篇论文,摘要是:“针对网格中的服务
- Oracle11.2新特性之INSERT提示IGNORE_ROW_ON_DUPKEY_INDEX
daizj
oracle
insert提示IGNORE_ROW_ON_DUPKEY_INDEX
转自:http://space.itpub.net/18922393/viewspace-752123
在 insert into tablea ...select * from tableb中,如果存在唯一约束,会导致整个insert操作失败。使用IGNORE_ROW_ON_DUPKEY_INDEX提示,会忽略唯一
- 二叉树:堆
dieslrae
二叉树
这里说的堆其实是一个完全二叉树,每个节点都不小于自己的子节点,不要跟jvm的堆搞混了.由于是完全二叉树,可以用数组来构建.用数组构建树的规则很简单:
一个节点的父节点下标为: (当前下标 - 1)/2
一个节点的左节点下标为: 当前下标 * 2 + 1
&
- C语言学习八结构体
dcj3sjt126com
c
为什么需要结构体,看代码
# include <stdio.h>
struct Student //定义一个学生类型,里面有age, score, sex, 然后可以定义这个类型的变量
{
int age;
float score;
char sex;
}
int main(void)
{
struct Student st = {80, 66.6,
- centos安装golang
dcj3sjt126com
centos
#在国内镜像下载二进制包
wget -c http://www.golangtc.com/static/go/go1.4.1.linux-amd64.tar.gz
tar -C /usr/local -xzf go1.4.1.linux-amd64.tar.gz
#把golang的bin目录加入全局环境变量
cat >>/etc/profile<
- 10.性能优化-监控-MySQL慢查询
frank1234
性能优化MySQL慢查询
1.记录慢查询配置
show variables where variable_name like 'slow%' ; --查看默认日志路径
查询结果:--不用的机器可能不同
slow_query_log_file=/var/lib/mysql/centos-slow.log
修改mysqld配置文件:/usr /my.cnf[一般在/etc/my.cnf,本机在/user/my.cn
- Java父类取得子类类名
happyqing
javathis父类子类类名
在继承关系中,不管父类还是子类,这些类里面的this都代表了最终new出来的那个类的实例对象,所以在父类中你可以用this获取到子类的信息!
package com.urthinker.module.test;
import org.junit.Test;
abstract class BaseDao<T> {
public void
- Spring3.2新注解@ControllerAdvice
jinnianshilongnian
@Controller
@ControllerAdvice,是spring3.2提供的新注解,从名字上可以看出大体意思是控制器增强。让我们先看看@ControllerAdvice的实现:
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Component
public @interface Co
- Java spring mvc多数据源配置
liuxihope
spring
转自:http://www.itpub.net/thread-1906608-1-1.html
1、首先配置两个数据库
<bean id="dataSourceA" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close&quo
- 第12章 Ajax(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- BW / Universe Mappings
blueoxygen
BO
BW Element
OLAP Universe Element
Cube Dimension
Class
Charateristic
A class with dimension and detail objects (Detail objects for key and desription)
Hi
- Java开发熟手该当心的11个错误
tomcat_oracle
java多线程工作单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 推行国产操作系统的优劣
yananay
windowslinux国产操作系统
最近刮起了一股风,就是去“国外货”。从应用程序开始,到基础的系统,数据库,现在已经刮到操作系统了。原因就是“棱镜计划”,使我们终于认识到了国外货的危害,开始重视起了信息安全。操作系统是计算机的灵魂。既然是灵魂,为了信息安全,那我们就自然要使用和推行国货。可是,一味地推行,是否就一定正确呢?
先说说信息安全。其实从很早以来大家就在讨论信息安全。很多年以前,就据传某世界级的网络设备制造商生产的交