- 2024计算机保研真题与面试资料整理(自己整理)
Better Rose
保研面试算法职场和发展
目录1数据结构1.1考察范围1.2常见问题1.3遇到的问答*2.1考察范围2.2常见问题2.3遇到的问答*3计算机网络3.1考察范围3.2常见问题3.3遇到的问答*4计算机语言4.1考察范围4.2常见问题4.3遇到的问答*5其他专业课5.1考察范围5.2常见问题5.3遇到的问答*1数据结构1.1考察范围堆、栈、队列、链表等数据结构树:红黑树、二叉树的各类分支等图:欧拉图:哈密顿图查找算法、哈希算法
- 【图论】欧拉回路
u小鬼
ACM23图论深度优先算法
前言你的qq密码是否在圆周率中出现?一个有意思的编码问题:假设密码是固定位数,设有nnn位,每位是数字0-9,那么这样最短的“圆周率”的长度是多少?或者说求一个最短的数字串定包含所有密码。理论一些定义:通过图中所有边恰好一次且行遍所有顶点的通路称为欧拉通路;通过图中所有边恰好一次且行遍所有顶点的回路称为欧拉回路;具有欧拉回路的无向图称为欧拉图;具有欧拉通路但不具有欧拉回路的无向图称为半欧拉图。求欧
- 欧拉路径、欧拉回路、欧拉图傻傻分不清楚?看这一篇就够了!
一棵油菜花
算法篇深度优先算法c++笔记图论
推荐在cnblogs阅读欧拉路径、回路、图前言当一手标题党,快乐~之前一直分不清楚,写篇笔记分辨一下。欧拉路径可以一笔画的路径,称为欧拉路径。不要求起点终点为同一点。判定:有向图:图中只有一个出度比入度大111的点(起点),与一个入度比出度大111的点(终点),其余点出入度相等。无向图:图中只有两个奇点(起点和终点),其余点都是偶点。当然,将有向边视作无向边后,路径必须连通。欧拉回路在欧拉路径的基
- 欧拉图及其应用
apprentice_eye
离散数学学习
什么是欧拉图提到欧拉图就要谈到哥尼斯堡七桥问题,最初有这样的一个问题的:18世纪中叶,东普鲁士哥尼斯堡城有一条贯穿全城的普雷格尔河,河中有两个岛,通过七座桥彼此相连,如下图所示问题是这样的:有人从四块陆地中的任意一块出发,按什么样的路线能做到每座桥只通过一次而最后返回原地。我们可以将整个问题抽象成下面的图进行解答:如果我们将每个节点与其他边数查出来(即数出每个节点的度数)这样就有下面的列表:名称度
- 代码随想录算法训练营第三十天|总结、332.重新安排行程、51.N皇后、37.解数独
Buuuleven.(程序媛
算法数据结构javaleetcode开发语言
代码随想录(programmercarl.com)总结332.重新安排行程欧拉通路和欧拉回路:欧拉通路:对于图G来说,如果存在一条通路包含G的所有边,则该通路称为欧拉通路,也称欧拉路径。欧拉回路:如果欧拉路径是一条回路,那么称其为欧拉回路。欧拉图:含有欧拉回路的图是欧拉图。题目中说必然存在一条有效路径,所以至少是半欧拉图,也可以是欧拉图。深度优先搜索(DFS):对每一个可能的分支路径深入到不能再深
- 代数结构与图论
JNU freshman
代数结构与图论图论
文章目录图的基本概念欧拉图与哈密顿图树平面图代数系统群与环格与布尔代数图的基本概念图的阶:图中的顶点数,n个顶点被称为n阶图零图:一条边都没有平凡图:一阶零图基图:将有向图的各条有向边改成无向边所得到的无向图称为该有向图的基图关联次数:可能取值为0,1,2(分别是边与顶点没有关联,vi!=vj,环)孤立点:图中没有边关联的顶点区分邻域,闭邻域等相关概念也就是对于无向图来说,邻域就是与v相邻的顶点,
- 第十部分 欧拉图与哈密顿图
星与星熙.
离散数学算法图论离散数学学习
欧拉图:历史背景:哥尼斯堡七桥问题与欧拉图问题提出后,很多人对此很感兴趣,纷纷进行试验,但在相当长的时间里,始终未能解决。而利用普通数学知识,每座桥均走一次,那这七座桥所有的走法一共有7×6×5×4×3×2×1=5040(种)。而这么多情况,要一一试验,这将会是很大的工作量。但怎么才能找到成功走过每座桥而不重复的路线呢?因而形成了著名的“哥尼斯堡七桥问题”。定义10.1(1)欧拉通路——经过图中每
- 代码随想录训练营第30天 | 332.重新安排行程、51. N皇后、37. 解数独
Jack199274
数据结构和算法算法数据结构
332.重新安排行程题目链接:重新安排行程解法:这个题,卡哥的思路会超时。辛辛苦苦看懂了卡哥的思路,结果超时了,直接崩溃。看了leetcode官方的思路,非常简洁,但是里面的深意还是不太懂。由于题目中说必然存在一条有效路径(至少是半欧拉图),所以算法不需要回溯(既加入到结果集里的元素不需要删除)整个图最多存在一个死胡同(出度和入度相差1),且这个死胡同一定是最后一个访问到的,否则无法完成一笔画。D
- 离散数学——图论
番茄元
基础知识python概率论机器学习
图论一、图的基本理论握手定理:每条边对顶点的度的贡献为2二、连通图、补图、偶图证明方法判定是否有圈常用方法:最长路法补图双图欧拉图欧拉闭迹:包含所有顶点所有边的闭迹。每个边只经过一次,但是顶点可以重复经过。欧拉图:包含欧拉闭迹的图。多重图多重图:带环图:伪图:欧拉定理:哈密顿图染色法:判断图不是哈密顿图图的表示:邻接矩阵带权图:相关问题三、树极小连通图树的中心生成树最小生成树割点、桥连通度、匹配明
- C++ 图论算法之欧拉路径、欧拉回路算法(一笔画完)
一枚大果壳
c++图论算法欧拉欧拉回路
公众号:编程驿站1.欧拉图本文从哥尼斯堡七桥的故事说起。哥尼斯堡城有一条横贯全市的普雷格尔河,河中的两个岛与两岸用七座桥连结起来。当时那里的居民热衷于一个话题:怎样不重复地走遍七桥,最后回到出发点。这也是经典的一笔画完问题。1736年瑞士数学家欧拉(Euler)发表了论文《哥尼斯堡七桥问题》。论文中使用图论理论解决哥尼斯堡七桥问题,欧拉图由此而来。论文中欧拉证明了如下定理:一个非空连通图当且仅当每
- 【离散数学】——期末刷题题库(欧拉图和哈密顿图)
IT闫
学习
个人专栏:算法设计与分析:算法设计与分析_IT闫的博客-CSDN博客Java基础:Java基础_IT闫的博客-CSDN博客c语言:c语言_IT闫的博客-CSDN博客MySQL:数据结构_IT闫的博客-CSDN博客数据结构:数据结构_IT闫的博客-CSDN博客C++:C++_IT闫的博客-CSDN博客C51单片机:C51单片机(STC89C516)_IT闫的博客-CSDN博客基于HTML5的网页设计
- 最优闭回路问题
七七喝椰奶
数学建模数学建模案例算法
目录一、欧拉回路与道路1、欧拉回路与道路2、欧拉图存在的条件二、中国邮路问题1、中国邮路问题2、中国邮路问题求解3、有奇点的G的中国邮路问题等价问题例1【问题分析】(1)先求图1中任意两点之间的距离矩阵d1如表1(Floyd算法)。(2)确定奇点之间的连线方案(3)规划邮路三、旅行商问题例2旅行商路线问题(算法:tsp问题)【符号设置】【模型假设】【建立模型】【数学模型】【模型求解】一、欧拉回路与
- 学习笔记:欧拉图 & 欧拉路
tsqtsqtsq0309
学习笔记
欧拉图&欧拉路定义图中经过所有边恰好一次的路径叫欧拉路径(也就是一笔画)。如果此路径的起点和终点相同,则称其为一条欧拉回路。欧拉回路:通过图中每条边恰好一次的回路。欧拉通路:通过图中每条边恰好一次的通路。欧拉图:具有欧拉回路的图。半欧拉图:具有欧拉通路但不具有欧拉回路的图。性质欧拉图中所有顶点的度数都是偶数。若GGG是欧拉图,则它为若干个环的并,且每条边被包含在奇数个环内。判别法无向图是欧拉图当且
- 读图数据库实战笔记01_初识图
躺柒
读图数据库实战图数据库TinkerPopGremlin图
1.图论1.1.起源于莱昂哈德·欧拉在1736年发表的一篇关于“哥尼斯堡七桥问题”的论文1.2.要解决这个问题,该图需要零个或两个具有奇数连接的节点1.3.任何满足这一条件的图都被称为欧拉图1.4.如果路径只访问每条边一次,则该图具有欧拉路径1.5.如果路径起点和终点相同,则该图具有欧拉回路,或称为欧拉环2.图2.1.顶点和边的集合2.2.示例2.2.1.路线图2.2.2.组织结构图2.3.当要思
- 图论基础知识总结
siyan985
图论和图神经网络图论算法数据结构
文章目录图的概念路图的代数表示邻接矩阵可达矩阵完全关联矩阵拉普拉斯矩阵对称归一化拉普拉斯矩阵随机游走归一化拉普拉斯矩阵欧拉图与汉密尔顿图平面图对偶与着色数与生成树最小生成树算法:根树图的存储邻接矩阵邻接表十字链表邻接多重表图的概念图是由节点和连接节点之间的边组成的,与连线的长度,节点的位置没有关系。一个图是一个三元组,其中V是一个非空的节点集合,E是边集合,F是从边集合E到节点序偶(无序偶或有序偶
- 图论基础&拓扑排序
*大祺
图论基础图论拓扑学
1.图的存储图的BFS遍历2.欧拉图(即能不重复得走完所有边且起点和终点相同的为欧拉图,只能不重复走完所有边但不能回到起点的是半欧拉图)3.拓扑排序1)概念引入一个工程常被分为多个小的子工程,这些子工程被称为活动(Activity),在有向图中若以顶点表示活动,有向边表示活动之间的先后关系,这样的·图简称为AOV网。在AOV网中为了更好地完成工程,必须满足活动之间先后关系,需要将各活动排一个先后次
- 欧拉图和哈密顿图
呆萌很
离散数学1024程序员节
欧拉图在连通图G中,经过G的每条边一次且仅一次的通路,称为欧拉通路若欧拉通路为回路,则称为欧拉回路含有欧拉回路的图称为欧拉图有欧拉通路则G可以一笔画出有欧拉回路则G是连通的且无奇点(欧拉图无奇点)哈密顿图在连通图G中,经过G的每个顶点一次且仅一次的通路,称为哈密顿路,若哈密顿路为回路,则称为哈密顿回路。含有哈密顿回路的图称为哈密顿图。哈密顿图关注的是顶点试题下列图中,是欧拉图的为()。【答案】C,
- PAT甲级1126 Eulerian Path (25 分)
ladedah
什么是欧拉路径?欧拉路径是无向连通图中的一条路径,该路径经过图的每一条边且仅经过一次。如果路径起点和终点相同,则称“欧拉回路”。具有欧拉回路的图称“欧拉图”。如何判断图中是否存在欧拉路径?由欧拉路径的定义可知,若图中存在欧拉路径,则该图必是一个连通图(1),其次,图中度数为奇数的点的个数必须为0或2(2),若度数为奇数的点的个数为0则是欧拉回路,若个数为2则是非欧拉回路的欧拉路径在此题中称为"Se
- [图论]哈尔滨工业大学(哈工大 HIT)学习笔记23-31
夏莉莉iy
图论学习笔记图论深度学习人工智能
视频来源:4.1.1背景_哔哩哔哩_bilibili目录1.哈密顿图1.1.背景1.2.哈氏图2.邻接矩阵/邻接表3.关联矩阵3.1.定义4.带权图1.哈密顿图1.1.背景(1)以地球为建模,从一个大城市开始遍历其他大城市并且返回,每个顶点只能被通过一次1.2.哈氏图(1)定义:如果G中有生成圈,则称G为哈氏图(2)和欧拉图的区别:欧拉图是一个顶点可以通过多次,只要把边画完就好。但哈密顿图一个顶点
- ACM图论知识总结
BeZer0
算法图论ACM算法
一.欧拉图1.定义:欧拉图是指通过图(无向图或有向图)中所有边且每边仅通过一次的通路,相应的回路称为欧拉回路。2.性质:欧拉图均为连通图;无向连通图G是欧拉图,则其不含奇数度结点(所有结点度数均为偶数);无向连通图G是欧拉通路,则其没有或有两个奇数度的结点,这两个节点为欧拉通路的起点与终点;有向连通图D是欧拉图,则其每个结点的入度=出度;有向连通图D是欧拉通路,则其除起点与终点外,其余每个结点的入
- [图论]哈尔滨工业大学(哈工大 HIT)学习笔记16-22
夏莉莉iy
图论学习笔记图论算法
视频来源:2.7.1补图_哔哩哔哩_bilibili目录1.补图1.1.补图2.双图2.1.双图定理3.图兰定理/托兰定理4.极图理论5.欧拉图5.1.欧拉迹5.2.欧拉闭迹5.3.欧拉图5.4.欧拉定理5.5.伪图1.补图1.1.补图(1)补图示例:其中G为母图,G'为其补图(2)定义:设,则的补图,其中(所有顶点关联边二元集不包含的子集)(3)推论:和它的补图有可能同构,即(4)例题:六个人的
- 省选模拟赛Round3Day1 进攻!字符串 序列
cqbzcsq
总结c++算法图论字符串数据结构
当我看到题时,心态就已经崩了。。。题解这题其实就是求网格图上的“希望”(有交K连通块计数)(这里我们把一个面看成一个点,面面之间有公共边则在两个面之间连边)根据希望那道题的容斥方法(边点容斥)这种容斥的本质其实就是欧拉图论定理V-E+F=2欧拉图论定理的适用范围是平面图,而网格图恰好就是平面图我们先来计算每个点包含它的矩形的数目,再计算出每条边包含它的矩形的数目,再算每个环包含它的矩形的数目那么最
- 欧拉道路全集
yryryryrr
芝士好吃知识好吃图论深度优先算法
前言怎么说,真的就是王定义欧拉道路什么叫做欧拉道路,其实就是一笔画完整个图的所有边,并且不可以重复走同一条边。欧拉回路就是起点和终点相同的欧拉道路,注意欧拉回路也属于欧拉道路欧拉图有欧拉回路的图我们叫做欧拉图。半欧拉图有欧拉道路的图,我们叫做半欧拉图。判断判断欧拉道路,也就是半欧拉图对于有向图,充分必要条件是,整个图联通,并有且只有两个度为奇数的点,一个入度比出度大一,另外一个相反。这两个也就是欧
- 哈工大集合论与图论(下)慕课MOOC答案
诩en
哈工大答案图论集合论与图论哈工大慕课MOOC
Ps:答案选自2023哈工大集合论与图论慕课,慕课的题重复率很高并且具有极高的相似性,选答案时要格外注意对比选项,能力有限答案不一定面面俱到,整理不易读者且用且珍惜第1讲图的基本概念第2讲连通图、补图、偶图第3讲欧拉图第4讲哈密顿图第5讲图的表示、带权图第6讲树、割集第7讲图的连通度第8讲匹配问题第9讲平面图第10讲图的顶点着色问题9、设图G=(V,E),其中V={a,b,c,d,e,f,g},E
- 离散数学 | 图论 | 欧拉图 | 哈密顿图 | 割点 | 桥(欧拉图和哈密顿图有没有割点和桥?)
诩en
离散数学图论数据结构集合论与图论离散数学
本文主要解决以下几个问题:1.欧拉图能不能有割点,能不能有桥?2.哈密顿图能不能有割点,能不能有桥?首先我们要明白几个定义割点的定义就是在一个图G中,它本来是连通的,去掉一个点v以后这个图G就不连通了,那么点v就被叫做割点。桥的定义就是在一个图G中,它本来也是连通的,去掉一条边x以后这个图就不连通了,那么边x就被称为桥。欧拉图是拥有欧拉闭迹的图。所谓欧拉闭迹,包含两层概念:“闭”和“迹”。我们先来
- 欧拉路和欧拉回路
流苏贺风
图论算法算法
欧拉路和欧拉回路算法原理一,无向图的欧拉欧拉路欧拉回路二,有向图的欧拉欧拉路欧拉回路大前提:欧拉图都是联通的以下定义摘自oiwiki通过图中所有边恰好一次且行遍所有顶点的通路称为欧拉通路。通过图中所有边恰好一次且行遍所有顶点的回路称为欧拉回路。具有欧拉回路的无向图或有向图称为欧拉图。具有欧拉通路但不具有欧拉回路的无向图或有向图称为半欧拉图。非形式化地讲,欧拉图就是从任意一个点开始都可以一笔画完整个
- 欧拉回路总结
ZhuRanCheng
数据结构图论算法数据结构欧拉路
欧拉回路一、相关定义1.欧拉通路只通过一次图中的每条边,且经过图中所有顶点的通路为欧拉通路;2.欧拉回路只通过一次图中的每条边,且经过图中所有顶点的回路为欧拉回路;3.有向图的基图忽略有向边的方向,得到的无向图则为该有向图的基图;4.欧拉图存在欧拉回路的图称为欧拉图;5.半欧拉图存在欧拉通路的图称为半欧拉图;二、判断与证明1.无向图若无向图G为连通图,则可通过度的奇偶性判断图G是否存在欧拉通路或回
- 欧拉回路详解
Jefferson__
搜索图论欧拉回路
文章目录知识点例题知识点欧拉通路和欧拉回路:欧拉通路:对于图G来说,如果存在一条通路包含G的所有边,则该通路称为欧拉通路,也称欧拉路径。欧拉回路:如果欧拉路径是一条回路,那么称其为欧拉回路。欧拉图:含有欧拉回路的图是欧拉图。对有向图G和无向图H:图G存在欧拉路径与欧拉回路的充要条件分别是:欧拉路径:图中所有奇度点的数量为0或2.欧拉回路:图中所有点的度数都是偶数。图H存在欧拉路径和欧拉回路的充要条
- 欧拉回路(详解)
joesx
c++算法图论
欧拉通路和欧拉回路:欧拉通路:对于图G来说,如果存在一条通路包含G的所有边,则该通路称为欧拉通路,也称欧拉路径。欧拉回路:如果欧拉路径是一条回路,那么称其为欧拉回路。欧拉图:含有欧拉回路的图是欧拉图。对有向图G和无向图H:图G存在欧拉路径与欧拉回路的充要条件分别是:欧拉路径:图中所有奇度点的数量为0或2.欧拉回路:图中所有点的度数都是偶数。图H存在欧拉路径和欧拉回路的充要条件分别为:欧拉路径:所有
- 欧拉通路及欧拉回路的概念和判断
Sankkl1
知识点及模板整理欧拉回路有向图
定义如果图G(有向图或者无向图)中所有边一次仅且一次行遍所有顶点的通路称作欧拉通路。如果图G中所有边一次仅且一次行遍所有顶点的回路称作欧拉回路。具有欧拉回路的图称为欧拉图(简称E图)。具有欧拉通路但不具有欧拉回路的图称为半欧拉图。存在的判断判断欧拉通路有向图:图连通,有一个顶点出度大入度1,有一个顶点入度大出度1,其余都是出度=入度。无向图:图连通,只有两个顶点是奇数度,其余都是偶数度的。判断欧拉
- web报表工具FineReport常见的数据集报错错误代码和解释
老A不折腾
web报表finereport代码可视化工具
在使用finereport制作报表,若预览发生错误,很多朋友便手忙脚乱不知所措了,其实没什么,只要看懂报错代码和含义,可以很快的排除错误,这里我就分享一下finereport的数据集报错错误代码和解释,如果有说的不准确的地方,也请各位小伙伴纠正一下。
NS-war-remote=错误代码\:1117 压缩部署不支持远程设计
NS_LayerReport_MultiDs=错误代码
- Java的WeakReference与WeakHashMap
bylijinnan
java弱引用
首先看看 WeakReference
wiki 上 Weak reference 的一个例子:
public class ReferenceTest {
public static void main(String[] args) throws InterruptedException {
WeakReference r = new Wea
- Linux——(hostname)主机名与ip的映射
eksliang
linuxhostname
一、 什么是主机名
无论在局域网还是INTERNET上,每台主机都有一个IP地址,是为了区分此台主机和彼台主机,也就是说IP地址就是主机的门牌号。但IP地址不方便记忆,所以又有了域名。域名只是在公网(INtERNET)中存在,每个域名都对应一个IP地址,但一个IP地址可有对应多个域名。域名类型 linuxsir.org 这样的;
主机名是用于什么的呢?
答:在一个局域网中,每台机器都有一个主
- oracle 常用技巧
18289753290
oracle常用技巧 ①复制表结构和数据 create table temp_clientloginUser as select distinct userid from tbusrtloginlog ②仅复制数据 如果表结构一样 insert into mytable select * &nb
- 使用c3p0数据库连接池时出现com.mchange.v2.resourcepool.TimeoutException
酷的飞上天空
exception
有一个线上环境使用的是c3p0数据库,为外部提供接口服务。最近访问压力增大后台tomcat的日志里面频繁出现
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.v2.resourcepool.BasicResou
- IT系统分析师如何学习大数据
蓝儿唯美
大数据
我是一名从事大数据项目的IT系统分析师。在深入这个项目前需要了解些什么呢?学习大数据的最佳方法就是先从了解信息系统是如何工作着手,尤其是数据库和基础设施。同样在开始前还需要了解大数据工具,如Cloudera、Hadoop、Spark、Hive、Pig、Flume、Sqoop与Mesos。系 统分析师需要明白如何组织、管理和保护数据。在市面上有几十款数据管理产品可以用于管理数据。你的大数据数据库可能
- spring学习——简介
a-john
spring
Spring是一个开源框架,是为了解决企业应用开发的复杂性而创建的。Spring使用基本的JavaBean来完成以前只能由EJB完成的事情。然而Spring的用途不仅限于服务器端的开发,从简单性,可测试性和松耦合的角度而言,任何Java应用都可以从Spring中受益。其主要特征是依赖注入、AOP、持久化、事务、SpringMVC以及Acegi Security
为了降低Java开发的复杂性,
- 自定义颜色的xml文件
aijuans
xml
<?xml version="1.0" encoding="utf-8"?> <resources> <color name="white">#FFFFFF</color> <color name="black">#000000</color> &
- 运营到底是做什么的?
aoyouzi
运营到底是做什么的?
文章来源:夏叔叔(微信号:woshixiashushu),欢迎大家关注!很久没有动笔写点东西,近些日子,由于爱狗团产品上线,不断面试,经常会被问道一个问题。问:爱狗团的运营主要做什么?答:带着用户一起嗨。为什么是带着用户玩起来呢?究竟什么是运营?运营到底是做什么的?那么,我们先来回答一个更简单的问题——互联网公司对运营考核什么?以爱狗团为例,绝大部分的移动互联网公司,对运营部门的考核分为三块——用
- js面向对象类和对象
百合不是茶
js面向对象函数创建类和对象
接触js已经有几个月了,但是对js的面向对象的一些概念根本就是模糊的,js是一种面向对象的语言 但又不像java一样有class,js不是严格的面向对象语言 ,js在java web开发的地位和java不相上下 ,其中web的数据的反馈现在主流的使用json,json的语法和js的类和属性的创建相似
下面介绍一些js的类和对象的创建的技术
一:类和对
- web.xml之资源管理对象配置 resource-env-ref
bijian1013
javaweb.xmlservlet
resource-env-ref元素来指定对管理对象的servlet引用的声明,该对象与servlet环境中的资源相关联
<resource-env-ref>
<resource-env-ref-name>资源名</resource-env-ref-name>
<resource-env-ref-type>查找资源时返回的资源类
- Create a composite component with a custom namespace
sunjing
https://weblogs.java.net/blog/mriem/archive/2013/11/22/jsf-tip-45-create-composite-component-custom-namespace
When you developed a composite component the namespace you would be seeing would
- 【MongoDB学习笔记十二】Mongo副本集服务器角色之Arbiter
bit1129
mongodb
一、复本集为什么要加入Arbiter这个角色 回答这个问题,要从复本集的存活条件和Aribter服务器的特性两方面来说。 什么是Artiber? An arbiter does
not have a copy of data set and
cannot become a primary. Replica sets may have arbiters to add a
- Javascript开发笔记
白糖_
JavaScript
获取iframe内的元素
通常我们使用window.frames["frameId"].document.getElementById("divId").innerHTML这样的形式来获取iframe内的元素,这种写法在IE、safari、chrome下都是通过的,唯独在fireforx下不通过。其实jquery的contents方法提供了对if
- Web浏览器Chrome打开一段时间后,运行alert无效
bozch
Webchormealert无效
今天在开发的时候,突然间发现alert在chrome浏览器就没法弹出了,很是怪异。
试了试其他浏览器,发现都是没有问题的。
开始想以为是chorme浏览器有啥机制导致的,就开始尝试各种代码让alert出来。尝试结果是仍然没有显示出来。
这样开发的结果,如果客户在使用的时候没有提示,那会带来致命的体验。哎,没啥办法了 就关闭浏览器重启。
结果就好了,这也太怪异了。难道是cho
- 编程之美-高效地安排会议 图着色问题 贪心算法
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.Random;
public class GraphColoringProblem {
/**编程之美 高效地安排会议 图着色问题 贪心算法
* 假设要用很多个教室对一组
- 机器学习相关概念和开发工具
chenbowen00
算法matlab机器学习
基本概念:
机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。
开发工具
M
- [宇宙经济学]关于在太空建立永久定居点的可能性
comsci
经济
大家都知道,地球上的房地产都比较昂贵,而且土地证经常会因为新的政府的意志而变幻文本格式........
所以,在地球议会尚不具有在太空行使法律和权力的力量之前,我们外太阳系统的友好联盟可以考虑在地月系的某些引力平衡点上面,修建规模较大的定居点
- oracle 11g database control 证书错误
daizj
oracle证书错误oracle 11G 安装
oracle 11g database control 证书错误
win7 安装完oracle11后打开 Database control 后,会打开em管理页面,提示证书错误,点“继续浏览此网站”,还是会继续停留在证书错误页面
解决办法:
是 KB2661254 这个更新补丁引起的,它限制了 RSA 密钥位长度少于 1024 位的证书的使用。具体可以看微软官方公告:
- Java I/O之用FilenameFilter实现根据文件扩展名删除文件
游其是你
FilenameFilter
在Java中,你可以通过实现FilenameFilter类并重写accept(File dir, String name) 方法实现文件过滤功能。
在这个例子中,我们向你展示在“c:\\folder”路径下列出所有“.txt”格式的文件并删除。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
- C语言数组的简单以及一维数组的简单排序算法示例,二维数组简单示例
dcj3sjt126com
carray
# include <stdio.h>
int main(void)
{
int a[5] = {1, 2, 3, 4, 5};
//a 是数组的名字 5是表示数组元素的个数,并且这五个元素分别用a[0], a[1]...a[4]
int i;
for (i=0; i<5; ++i)
printf("%d\n",
- PRIMARY, INDEX, UNIQUE 这3种是一类 PRIMARY 主键。 就是 唯一 且 不能为空。 INDEX 索引,普通的 UNIQUE 唯一索引
dcj3sjt126com
primary
PRIMARY, INDEX, UNIQUE 这3种是一类PRIMARY 主键。 就是 唯一 且 不能为空。INDEX 索引,普通的UNIQUE 唯一索引。 不允许有重复。FULLTEXT 是全文索引,用于在一篇文章中,检索文本信息的。举个例子来说,比如你在为某商场做一个会员卡的系统。这个系统有一个会员表有下列字段:会员编号 INT会员姓名
- java集合辅助类 Collections、Arrays
shuizhaosi888
CollectionsArraysHashCode
Arrays、Collections
1 )数组集合之间转换
public static <T> List<T> asList(T... a) {
return new ArrayList<>(a);
}
a)Arrays.asL
- Spring Security(10)——退出登录logout
234390216
logoutSpring Security退出登录logout-urlLogoutFilter
要实现退出登录的功能我们需要在http元素下定义logout元素,这样Spring Security将自动为我们添加用于处理退出登录的过滤器LogoutFilter到FilterChain。当我们指定了http元素的auto-config属性为true时logout定义是会自动配置的,此时我们默认退出登录的URL为“/j_spring_secu
- 透过源码学前端 之 Backbone 三 Model
逐行分析JS源代码
backbone源码分析js学习
Backbone 分析第三部分 Model
概述: Model 提供了数据存储,将数据以JSON的形式保存在 Model的 attributes里,
但重点功能在于其提供了一套功能强大,使用简单的存、取、删、改数据方法,并在不同的操作里加了相应的监听事件,
如每次修改添加里都会触发 change,这在据模型变动来修改视图时很常用,并且与collection建立了关联。
- SpringMVC源码总结(七)mvc:annotation-driven中的HttpMessageConverter
乒乓狂魔
springMVC
这一篇文章主要介绍下HttpMessageConverter整个注册过程包含自定义的HttpMessageConverter,然后对一些HttpMessageConverter进行具体介绍。
HttpMessageConverter接口介绍:
public interface HttpMessageConverter<T> {
/**
* Indicate
- 分布式基础知识和算法理论
bluky999
算法zookeeper分布式一致性哈希paxos
分布式基础知识和算法理论
BY
[email protected]
本文永久链接:http://nodex.iteye.com/blog/2103218
在大数据的背景下,不管是做存储,做搜索,做数据分析,或者做产品或服务本身,面向互联网和移动互联网用户,已经不可避免地要面对分布式环境。笔者在此收录一些分布式相关的基础知识和算法理论介绍,在完善自我知识体系的同
- Android Studio的.gitignore以及gitignore无效的解决
bell0901
androidgitignore
github上.gitignore模板合集,里面有各种.gitignore : https://github.com/github/gitignore
自己用的Android Studio下项目的.gitignore文件,对github上的android.gitignore添加了
# OSX files //mac os下 .DS_Store
- 成为高级程序员的10个步骤
tomcat_oracle
编程
What
软件工程师的职业生涯要历经以下几个阶段:初级、中级,最后才是高级。这篇文章主要是讲如何通过 10 个步骤助你成为一名高级软件工程师。
Why
得到更多的报酬!因为你的薪水会随着你水平的提高而增加
提升你的职业生涯。成为了高级软件工程师之后,就可以朝着架构师、团队负责人、CTO 等职位前进
历经更大的挑战。随着你的成长,各种影响力也会提高。
- mongdb在linux下的安装
xtuhcy
mongodblinux
一、查询linux版本号:
lsb_release -a
LSB Version: :base-4.0-amd64:base-4.0-noarch:core-4.0-amd64:core-4.0-noarch:graphics-4.0-amd64:graphics-4.0-noarch:printing-4.0-amd64:printing-4.0-noa