《Advances inCollaborative Filtering》读书笔记

yuehuda koren 是yahoo推荐系统方面的大牛。Advances inCollaborative Filtering是他2011年的文章。

下面简单介绍一下:

大量的人对推荐系统感兴趣,研究机构、企业等大量投入推荐系统的研究和应用。

 

推荐系统的输入:

explicitfeedback:打分;点击向上/向下的大拇指;

implicitfeedback:隐式的反馈;购买、浏览、搜索模式,甚至鼠标的移动。

 

推荐系统需要联系两种实体。items和users。

 

 

CF有两种方法: 

the neighborhoodapproachandlatent factor models

the neighborhood approach:关键是找相关的item,相关的user。


  Netflix的数据情况:

  Netflix customers between Nov11, 1999 and Dec 31, 2005 [5]. Ratingsare integers ranging between 1 and 5. The data spans

17,770 movies rated by over480,000 users. Thus, on average, a movie receives 5600 ratings, while a userrates 208 movies, with substantial variation around each

of these averages.


SVD:

最小化的两种解法:Minimization is typically performed by either stochastic gradient descent or alternating least squares。SGD和ALS方法

你可能感兴趣的:(《Advances inCollaborative Filtering》读书笔记)