转载请注明出处:http://blog.csdn.net/u012860063/article/details/37509207
题目链接:http://codeforces.com/contest/445/problem/C
----------------------------------------------------------------------------------------------------------------------------------------------------------
欢迎光临天资小屋:http://user.qzone.qq.com/593830943/main
----------------------------------------------------------------------------------------------------------------------------------------------------------
DZY Loves Physics
DZY loves Physics, and he enjoys calculating density.
Almost everything has density, even a graph. We define the density of a non-directed graph (nodes and edges of the graph have some values) as follows:
where v is the sum of the values of the nodes, e is the sum of the values of the edges.Once DZY got a graph G, now he wants to find a connected induced subgraph G' of the graph, such that the density of G' is as large as possible.
An induced subgraph G'(V', E') of a graph G(V, E) is a graph that satisfies:
Help DZY to find the induced subgraph with maximum density. Note that the induced subgraph you choose must be connected.
The first line contains two space-separated integers n (1 ≤ n ≤ 500), . Integer n represents the number of nodes of the graph G, m represents the number of edges.
The second line contains n space-separated integers xi (1 ≤ xi ≤ 106), where xi represents the value of the i-th node. Consider the graph nodes are numbered from 1 to n.
Each of the next m lines contains three space-separated integers ai, bi, ci (1 ≤ ai < bi ≤ n; 1 ≤ ci ≤ 103), denoting an edge between node ai and bi with value ci. The graph won't contain multiple edges.
Output a real number denoting the answer, with an absolute or relative error of at most 10 - 9.
1 0 1
0.000000000000000
2 1 1 2 1 2 1
3.000000000000000
5 6 13 56 73 98 17 1 2 56 1 3 29 1 4 42 2 3 95 2 4 88 3 4 63
2.965517241379311
In the first sample, you can only choose an empty subgraph, or the subgraph containing only node 1.
In the second sample, choosing the whole graph is optimal.
题意: 给出一个源图, 要求寻找一个密度(点的值/边的值)最大的子图;
当然子图有三个要满足的要求!
思路:枚举每天边,及其端点的值。为什么这就是最大密度的子图呢?
因为子图必然是由很多边和端点所组成的,而想要最大密度的子图,必然子图中其中的一条边的密度是最大的(至少不会小于子图的总密度),这样只需要找出密度最大的边就是答案.
代码如下:
#include <cstdio> #define N 517 double MAX(double a, double b) { return a>b?a:b; } int main() { int n, m; int x[N]; int a, b, c; while(~scanf("%d%d",&n,&m)) { int i, j; for(i = 1; i <= n; i++) { scanf("%d",&x[i]); } double max = 0, t; for(i = 1; i <= m; i++) { scanf("%d%d%d",&a,&b,&c); t =(double) (x[a]+x[b])/c; max = MAX(max, t); } printf("%.15f\n",max); } return 0; }