- 高斯消元法及其C++实现
Zengtudor
C++算法c++开发语言
深入浅出高斯消元法及其C++实现本文章代码由博主编写但是文章由ChatGPT-o1-mini生成博客食用更佳在计算机算法竞赛中,线性方程组的求解是一个常见且基础的问题。高斯消元法作为一种经典的算法,因其高效和直观的特性,广泛应用于各种编程竞赛和实际问题中。本文将通过一个具体的C++实现,深入浅出地讲解高斯消元法的核心概念、实现细节以及如何应对实际编程中的挑战。一、问题背景高斯消元法(Gaussia
- The 15-th BIT Campus Programming Contest - Onsite Round——J题(枚举优化或拉格朗日插值)
mumei314
组队赛算法
题目链接:https://codeforces.com/gym/102878/problem/J题解这个题有两种做法,第二种做法比较好想,但是需要优化一下。这里先说第一种做法(拉格朗日插值或者高斯消元)首先题目给我们限定了F(i)F(i)F(i)的取值范围,对于每个F(i)F(i)F(i),至多有三种选择:fif_{i}fi,fi−1f_{i}-1fi−1和fi+1f_{i}+1fi+1。因此我们
- 【高斯消元】学习笔记
shy_lihui
算法学习笔记线性代数
洛谷端文章:https://www.luogu.com.cn/article/n5rjrsdw,如无法访问访问https://www.luogu.com.cn/article/n5rjrsdw。理论这个算法可以求nnn元一次方程组的解。举个例子,现在已知有三元一次方程:{x+2y+3z=36−x+y+2z=17x+2z=17\begin{cases}x+2y+3z=36\\-x+y+2z=17\\
- 概率dp总结
new出新对象!
算法动态规划
概率DP用于解决概率问题与期望问题,建议先对概率&期望的内容有一定了解。一般情况下,解决概率问题需要顺序循环,而解决期望问题使用逆序循环,如果定义的状态转移方程存在后效性问题,还需要用到高斯消元来优化。概率DP也会结合其他知识进行考察,例如状态压缩,树上进行DP转移等。我们这一次博客首先来讲dp去求概率的问题,这种问题一般都是顺序向后推的,主要还是dp的状态转移方程式一般还是比较难找到的我们来通过
- 深入解析高斯消元法:原理剖析与C++实战实现
xMathematics
c++算法开发语言
深入解析高斯消元法:原理剖析与C++实战实现一.高斯消元法理论基础1.1线性方程组求解的数学原理线性方程组解的情况由矩阵的秩和行列式特性决定。对于一个包含nnn个未知数、mmm个方程的线性方程组,可将其系数构成系数矩阵AAA,再添上常数项得到增广矩阵A‾\overline{A}A。当系数矩阵的秩rank(A)rank(A)rank(A)等于增广矩阵的秩rank(A‾)rank(\overline{
- 解线性方程组的直接方法:高斯消元法与其程序实现
^ω^宇博
python数值分析python
解线性方程组的直接方法:高斯消元法与其程序实现1.顺序高斯消元法设线性方程组Ax=b\boldsymbol{Ax}=\boldsymbol{b}Ax=b如果akk(k)≠0a_{kk}^{\left(k\right)}\ne0akk(k)=0可以通过高斯消元法转化为等价的三角形线性方程组:[a11a12⋯a1na21a22⋯a2n⋮⋮⋱⋮an1an2⋯ann][x1x2⋮xn]=[b1b2⋮bn
- 【算法 | Python】高斯消元法
weixin_43964993
算法python算法pythonnumpy
程序来源:GaussianEliminationArithmeticAnalysis原理说明源代码代码说明原理说明高斯消元法(GaussElimination)【超详解&模板】高斯消元法-百度百科源代码"""Gaussianeliminationmethodforsolvingasystemoflinearequations.Gaussianelimination-https://en.wikip
- AcWing算法基础课笔记——高斯消元
SharkWeek.
AcWing算法笔记数论
高斯消元用来求解方程组a11x1+a12x2+⋯+a1nxn=b1a21x1+a22x2+⋯+a2nxn=b2…an1x1+an2x2+⋯+annxn=bna_{11}x_1+a_{12}x_2+\dots+a_{1n}x_n=b_1\\a_{21}x_1+a_{22}x_2+\dots+a_{2n}x_n=b_2\\\dots\\a_{n1}x_1+a_{n2}x_2+\dots+a_{nn}x
- 【线性代数】列主元法求矩阵的逆
BlackPercy
线性代数Julialang线性代数矩阵机器学习
列主元方法是一种用于求解矩阵逆的数值方法,特别适用于在计算机上实现。其基本思想是通过高斯消元法将矩阵转换为上三角矩阵,然后通过回代求解矩阵的逆。以下是列主元方法求解矩阵AAA的逆的步骤:步骤1:初始化构造增广矩阵[A∣I][A|I][A∣I],其中III是nnn阶单位矩阵。步骤2:列主元选择对于第kkk列(k=1,2,…,nk=1,2,\ldots,nk=1,2,…,n),找到列主元,即找到iki
- 线性代数 --- LU分解(Gauss消元法的矩阵表示)
松下J27
LinearAlgebra线性代数矩阵LU分解高斯消元矩阵运行gaussianLU
Gauss消元法等价于把系数矩阵A分解成两个三角矩阵L和U的乘法首先,LU分解实际上就是用矩阵的形式来记录的高斯消元的过程。其中,对矩阵A进行高斯消元后的结果为矩阵U,是LU分解后的两个三角矩阵中其中之一。U是一个上三角矩阵,U就是上三角矩阵uppertriangle的首字母的大写。高斯消元的每一步都能用基本消元矩阵E来表示。而所有的E都可以收录在一个矩阵当中,我这里叫他Z矩阵。Z矩阵就是集所有基
- 数学基础 -- 线性代数之行阶梯形
sz66cm
线性代数机器学习人工智能
行阶梯形行阶梯形(RowEchelonForm,REF)是线性代数中用于简化矩阵形式的一种方法,常用于求解线性方程组。矩阵经过行变换(如高斯消元法)后可以转换为行阶梯形,它具有以下特点:行阶梯形的定义零行在矩阵的底部:矩阵中如果存在一行全为零的行,这些行必须在矩阵的最下方。每一非零行的首个非零元素为1:这一元素称为该行的主元(leadingentry)。主元是从左到右的第一个非零元素,并且主元必须
- 乘法-逆矩阵
取个名字真难呐
线性代数矩阵算法线性代数
文章目录1.矩阵相乘-5种方式1.1C=AB1.2AX列组合1.3XB行组合1.4列行组合1.5块求和2.高斯消元法求A−1A^{-1}A−12.1求A−1A^{-1}A−12.2推理1.矩阵相乘-5种方式1.1C=AB假设我们要求得矩阵C=AB,可以用如下公式表示cij=∑k=1Naikbkj(1)c_{ij}=\sum_{k=1}^Na_{ik}b_{kj}\tag{1}cij=k=1∑Nai
- 课程大纲:图像处理中的矩阵计算
superdont
计算机视觉图像处理矩阵人工智能
课程名称:《图像处理中的矩阵计算》课程简介:图像处理中的矩阵计算是图像分析与处理的核心部分。本课程旨在教授学员如何应用线性代数中的矩阵计算,以实现各种图像处理技术。我们将通过强调实际应用和实践活动来确保学员能够理解和掌握这些概念。课程大纲:第1章:矩阵计算基础矩阵及其表示方式矩阵四则运算单位矩阵和逆矩阵矩阵的转置线性系统和矩阵的求解(高斯消元法)第2章:图像表示和颜色空间数字图像的矩阵表示灰度图像
- [数学]高斯消元
Waldeinsamkeit41
算法数据结构
介绍用处:求解线性方程组加减消元法和代入消元法这里引用了高斯消元解线性方程组----C++实现_c++用高斯消元法解线性方程组-CSDN博客改成了自己常用的形式:intgauss(){intc,r;//column,rowfor(c=1,r=1;cfabs(a[maxx][c]))maxx=i;if(fabs(a[maxx][c])=c;i--)a[r][i]/=a[r][c];//把现在的第r行
- 06 逆矩阵、列空间与零空间
林炒Lynn
06逆矩阵、列空间与零空间imageimage直观理解这几个概念,计算方法不作讨论,如"Gaussianelimination高斯消元法"和"rowechelonform行阶梯型".Letthecomputerdocomputing!Usefulnessofmatrices矩阵的用途计算机图形学机器人学被广泛应用的一个主要原因就是它能帮助我们求解特定的systemofequations方程组大部分
- 蓝桥杯_数学知识_1 (质数筛法 - 分解质因数 - 约数【约数个数 - 约数之和 - 最大公约数】 )
violet~evergarden
算法蓝桥杯c++
文章目录866.试除法判定质数868.筛质数((朴素)埃氏筛法、线性筛法)判断素数埃式筛法(朴素)线性筛法【分解质因数】869.试除法求约数(试除法)870.约数个数871.约数之和872.最大公约数1.数论【每一步都要想时间复杂度,看能不能做】2.组合计数3.高斯消元4.简单博弈论866.试除法判定质数给定n个正整数ai,判定每个数是否是质数。输入格式第一行包含整数n。接下来n行,每行包含一个正
- 计算机是怎么求解线性方程的(矩阵乘和求逆)
異轩
上回我们说到,高斯老哥用消元法解线性方程,大致步骤呢就是给系数矩阵消元,运气好点呢直接整出上三角系数矩阵,得到方程组的唯一解,运气不行呢,消着消着发现整不出上三角,这时就得再讨论方程是有多解还是无解。这里所说的"运气"呢其实可以根据行列式啊,Ax=0是否有解啊判断得到,具体操作可以看看我聊消元法的那一篇文章。但是,高斯消元法存在一个问题,就是它是给人做的,比如给第一行乘个倍数加到另一行,或者将矩阵
- AcWing.883.高斯消元解线性方程组
Die love 6-feet-under
算法c++笔记
输入一个包含n个方程n个未知数的线性方程组。方程组中的系数为实数。求解这个方程组。下图为一个包含m个方程n个未知数的线性方程组示例:输入格式第一行包含整数nnn。接下来nnn行,每行包含n+1n+1n+1个实数,表示一个方程的nnn个系数以及等号右侧的常数。输出格式如果给定线性方程组存在唯一解,则输出共nnn行,其中第iii行输出第iii个未知数的解,结果保留两位小数。注意:本题有SPJ,当输出结
- C++ 数论相关题目:高斯消元解异或线性方程组
伏城无嗔
数论力扣算法笔记c++算法
输入一个包含n个方程n个未知数的异或线性方程组。方程组中的系数和常数为0或1,每个未知数的取值也为0或1。求解这个方程组。异或线性方程组示例如下:M[1][1]x[1]^M[1][2]x[2]^…^M[1][n]x[n]=B[1]M[2][1]x[1]^M[2][2]x[2]^…^M[2][n]x[n]=B[2]…M[n][1]x[1]^M[n][2]x[2]^…^M[n][n]x[n]=B[n]
- 详解矩阵的LDU分解
唠嗑!
格密码的数学基础算法网络安全线性代数
目录一.矩阵分解二.解方程三.例题说明四.矩阵的LDU分解五.矩阵三角分解的唯一性一.矩阵分解其实我们可以把一个线性系统(LinearSystem)看成两个三角系统(TriangularSystems),本文章将解释为什么可以这么看待解线性方程组,以及这样理解到底有什么好处。我们知道高斯消元法其实跟矩阵的三角分解有关,如下:A=LU其中,A为任意方阵,L为下三角矩阵且对角线处元素均为1,U为上三角
- MIT_线性代数笔记:线性代数常用概念及术语总结
浊酒南街
MIT_线性代数笔记线性代数笔记
目录1.系数矩阵2.高斯消元法3.置换矩阵Permutation4.逆矩阵Inverse5.高斯-若尔当消元法6.矩阵的LU分解7.三角矩阵1.系数矩阵线性代数的基本问题就是解n元一次方程组。例如:二元一次方程组2x−y=0−x+2y=3\begin{align*}&2x-y=0\\&-x+2y=3\end{align*}2x−y=0−x+2y=3写成矩阵形式就是:[2−1−12][xy]=[03
- 数论知识及模板整理
smiling~
数论模板学习笔记算法
目录一、质数的判定1.试除法判定质数2.质因数的分解3.质数筛选法(埃氏筛法+线性筛)4.米勒罗宾素数检测法(快速判断大质数)二、约数相关(1)试除法求约数(2)求约数个数或约数之和(3)求最大公因数/最小公倍数三、欧几里得算法(1)扩展欧几里得算法(2)线性同余方程四、快速幂(1)快速幂算法(2)大数快速幂(降幂公式)(3)快速幂求逆元(费马小定理)五、欧拉函数六、组合数学七、高斯消元八、容斥原
- 第九周学习报告(1.15-1.21)
三冬四夏会不会有点漫长
#算法训练周报学习
知识点,比赛和做题情况知识点终于把acwing的算法基础课全部看完了(是一些简单的算法模板)比赛无做题情况1.CF写了一个教育场次的A题TrickySum(等差数列求和,循环)2.acwing900.(dp的一个模板题)883,884(高斯消元的模板题)885,886,887,888,889(组合数的模板题)890(容斥原理模板题)891,892,893,894(博弈论模板题)894,338,29
- 详解矩阵的三角分解A=LU
唠嗑!
格密码的数学基础算法线性代数网络安全
目录一.求解Ax=b二.上三角矩阵分解三.下三角矩阵分解四.矩阵的三角分解举例1:矩阵三角分解举例2:三角分解的限制举例3:主元和乘法因子均为1举例4:U为单位阵小结一.求解Ax=b我们知道高斯消元法可以对应矩阵的基础变换。先来看我们比较熟悉的Ax=b模型,如下:解这个方程很简单,只需要三步高斯消元步骤,分别乘以2,-1,-1.第一步:第二行减去第一行乘以2倍;第二步:第三行减去第一行乘以-1;第
- c语言求逆矩阵-高斯消元法
不会C语言的男孩
c语言矩阵开发语言
/***A表示输入的矩阵*B表示输出的逆矩阵*n表示秩的大小*/voidGauss(doubleA[][N],doubleB[][N],intn)//这里的n指的是n*n的方阵中的n{inti,j,k;doublemax,temp;doublet[N][N];//临时矩阵//将A矩阵存放在临时矩阵t[n][n]中for(i=0;ifabs(max)){max=t[j][i];k=j;}}//如果主
- 并行程序设计实验——高斯消元
NK.MainJay
c语言
并行程序设计实验——高斯消元一、问题描述熟悉高斯消元法解线性方程组的过程,然后实现SSE算法编程。过程中,自行构造合适的线性方程组,并选取至少2个角度,讨论不同算法策略对性能的影响。可选角度包括但不限于以下几种选项:①相同算法对于不同问题规模的性能提升是否有影响,影响情况如何;②消元过程中采用向量编程的的性能提升情况如何;③回代过程可否向量化,有的话性能提升情况如何;④数据对齐与不对齐对计算性能有
- 二维泊松方程求解-SIP-最速下降法-共轭梯度
CFD_Tyro
1.直接解法:LU分解在前面的内容中曾经提到,使用有限差分或有限体积法通过隐式离散得到的求解形式,其中为系数矩阵。在一定条件下,能够通过因式分解为,其中为下三角矩阵,为上三角矩阵。这样的分解方式在高斯消元中十分有用,对的求解可分为以下两步2.迭代法:incompleteLUdecomposition如果存在一个与近似的矩阵,对做LU分解,我们把这样的步骤称为的不完全LU分解,ILU,即其中为小量。
- HDU-5955 Guessing the Dice Roll(AC自动机、高斯消元)
上总介
文章目录原题链接题意思路推导代码原题链接GuessingtheDiceRoll题意给定N(1≤N≤10)N(1\leqN\leq10)N(1≤N≤10)个长度都为L(1≤L≤10)L(1\leqL\leq10)L(1≤L≤10)的数字序列Ti(1≤i≤10)T_i(1\leqi\leq10)Ti(1≤i≤10),数字序列仅由{1,2,3,4,5,6}\left\{1,2,3,4,5,6\right
- 算法有哪⼏类?
颓特别我废
C语言算法c语言
一、问题按照执⾏功能的不同,可以将算法分为不同的类别,那么算法有哪⼏类?二、解答计算机上的算法按照实现功能可以分为两⼤类:即数值型算法和⾮数值算法。1、数值型算法(NumericalAlgorithms)这类算法主要用于处理数值数据和解决数学问题,它们通常涉及到大量的数学计算,包括但不限于矩阵运算、微积分、线性代数、概率统计、优化问题等。例如,求解方程组的高斯消元法、数值积分方法如辛普森法则、牛顿
- C#,数值计算,高斯消元法与列主元消元法的源代码及数据动态可视化
深度混淆
C#算法演义AlgorithmRecipesC#数值计算NumericalRecipesc#算法高斯消元法线性代数
高斯消元法!一、高斯消元法GaussianElimination高斯消元法(或译:高斯消去法),是线性代数中的一个常用算法,常用于求解线性方程组和矩阵的逆。本程序的运行效果:1、高斯消元法的动画演示2、高斯列主元消元法的动画演示列主元素消去法是为控制舍入误差而提出来的一种算法,列主元素消去法计算基本上能控制舍入误差的影响,其基本思想是:在进行第k(k=1,2,...,n-1)步消元时,从第k列的a
- jsonp 常用util方法
hw1287789687
jsonpjsonp常用方法jsonp callback
jsonp 常用java方法
(1)以jsonp的形式返回:函数名(json字符串)
/***
* 用于jsonp调用
* @param map : 用于构造json数据
* @param callback : 回调的javascript方法名
* @param filters : <code>SimpleBeanPropertyFilter theFilt
- 多线程场景
alafqq
多线程
0
能不能简单描述一下你在java web开发中需要用到多线程编程的场景?0
对多线程有些了解,但是不太清楚具体的应用场景,能简单说一下你遇到的多线程编程的场景吗?
Java多线程
2012年11月23日 15:41 Young9007 Young9007
4
0 0 4
Comment添加评论关注(2)
3个答案 按时间排序 按投票排序
0
0
最典型的如:
1、
- Maven学习——修改Maven的本地仓库路径
Kai_Ge
maven
安装Maven后我们会在用户目录下发现.m2 文件夹。默认情况下,该文件夹下放置了Maven本地仓库.m2/repository。所有的Maven构件(artifact)都被存储到该仓库中,以方便重用。但是windows用户的操作系统都安装在C盘,把Maven仓库放到C盘是很危险的,为此我们需要修改Maven的本地仓库路径。
- placeholder的浏览器兼容
120153216
placeholder
【前言】
自从html5引入placeholder后,问题就来了,
不支持html5的浏览器也先有这样的效果,
各种兼容,之前考虑,今天测试人员逮住不放,
想了个解决办法,看样子还行,记录一下。
【原理】
不使用placeholder,而是模拟placeholder的效果,
大概就是用focus和focusout效果。
【代码】
<scrip
- debian_用iso文件创建本地apt源
2002wmj
Debian
1.将N个debian-506-amd64-DVD-N.iso存放于本地或其他媒介内,本例是放在本机/iso/目录下
2.创建N个挂载点目录
如下:
debian:~#mkdir –r /media/dvd1
debian:~#mkdir –r /media/dvd2
debian:~#mkdir –r /media/dvd3
….
debian:~#mkdir –r /media
- SQLSERVER耗时最长的SQL
357029540
SQL Server
对于DBA来说,经常要知道存储过程的某些信息:
1. 执行了多少次
2. 执行的执行计划如何
3. 执行的平均读写如何
4. 执行平均需要多少时间
列名 &
- com/genuitec/eclipse/j2eedt/core/J2EEProjectUtil
7454103
eclipse
今天eclipse突然报了com/genuitec/eclipse/j2eedt/core/J2EEProjectUtil 错误,并且工程文件打不开了,在网上找了一下资料,然后按照方法操作了一遍,好了,解决方法如下:
错误提示信息:
An error has occurred.See error log for more details.
Reason:
com/genuitec/
- 用正则删除文本中的html标签
adminjun
javahtml正则表达式去掉html标签
使用文本编辑器录入文章存入数据中的文本是HTML标签格式,由于业务需要对HTML标签进行去除只保留纯净的文本内容,于是乎Java实现自动过滤。
如下:
public static String Html2Text(String inputString) {
String htmlStr = inputString; // 含html标签的字符串
String textSt
- 嵌入式系统设计中常用总线和接口
aijuans
linux 基础
嵌入式系统设计中常用总线和接口
任何一个微处理器都要与一定数量的部件和外围设备连接,但如果将各部件和每一种外围设备都分别用一组线路与CPU直接连接,那么连线
- Java函数调用方式——按值传递
ayaoxinchao
java按值传递对象基础数据类型
Java使用按值传递的函数调用方式,这往往使我感到迷惑。因为在基础数据类型和对象的传递上,我就会纠结于到底是按值传递,还是按引用传递。其实经过学习,Java在任何地方,都一直发挥着按值传递的本色。
首先,让我们看一看基础数据类型是如何按值传递的。
public static void main(String[] args) {
int a = 2;
- ios音量线性下降
bewithme
ios音量
直接上代码吧
//second 几秒内下降为0
- (void)reduceVolume:(int)second {
KGVoicePlayer *player = [KGVoicePlayer defaultPlayer];
if (!_flag) {
_tempVolume = player.volume;
- 与其怨它不如爱它
bijian1013
选择理想职业规划
抱怨工作是年轻人的常态,但爱工作才是积极的心态,与其怨它不如爱它。
一般来说,在公司干了一两年后,不少年轻人容易产生怨言,除了具体的埋怨公司“扭门”,埋怨上司无能以外,也有许多人是因为根本不爱自已的那份工作,工作完全成了谋生的手段,跟自已的性格、专业、爱好都相差甚远。
- 一边时间不够用一边浪费时间
bingyingao
工作时间浪费
一方面感觉时间严重不够用,另一方面又在不停的浪费时间。
每一个周末,晚上熬夜看电影到凌晨一点,早上起不来一直睡到10点钟,10点钟起床,吃饭后玩手机到下午一点。
精神还是很差,下午像一直野鬼在城市里晃荡。
为何不尝试晚上10点钟就睡,早上7点就起,时间完全是一样的,把看电影的时间换到早上,精神好,气色好,一天好状态。
控制让自己周末早睡早起,你就成功了一半。
有多少个工作
- 【Scala八】Scala核心二:隐式转换
bit1129
scala
Implicits work like this: if you call a method on a Scala object, and the Scala compiler does not see a definition for that method in the class definition for that object, the compiler will try to con
- sudoku slover in Haskell (2)
bookjovi
haskellsudoku
继续精简haskell版的sudoku程序,稍微改了一下,这次用了8行,同时性能也提高了很多,对每个空格的所有解不是通过尝试算出来的,而是直接得出。
board = [0,3,4,1,7,0,5,0,0,
0,6,0,0,0,8,3,0,1,
7,0,0,3,0,0,0,0,6,
5,0,0,6,4,0,8,0,7,
- Java-Collections Framework学习与总结-HashSet和LinkedHashSet
BrokenDreams
linkedhashset
本篇总结一下两个常用的集合类HashSet和LinkedHashSet。
它们都实现了相同接口java.util.Set。Set表示一种元素无序且不可重复的集合;之前总结过的java.util.List表示一种元素可重复且有序
- 读《研磨设计模式》-代码笔记-备忘录模式-Memento
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
/*
* 备忘录模式的功能是,在不破坏封装性的前提下,捕获一个对象的内部状态,并在对象之外保存这个状态,为以后的状态恢复作“备忘”
- 《RAW格式照片处理专业技法》笔记
cherishLC
PS
注意,这不是教程!仅记录楼主之前不太了解的
一、色彩(空间)管理
作者建议采用ProRGB(色域最广),但camera raw中设为ProRGB,而PS中则在ProRGB的基础上,将gamma值设为了1.8(更符合人眼)
注意:bridge、camera raw怎么设置显示、输出的颜色都是正确的(会读取文件内的颜色配置文件),但用PS输出jpg文件时,必须先用Edit->conv
- 使用 Git 下载 Spring 源码 编译 for Eclipse
crabdave
eclipse
使用 Git 下载 Spring 源码 编译 for Eclipse
1、安装gradle,下载 http://www.gradle.org/downloads
配置环境变量GRADLE_HOME,配置PATH %GRADLE_HOME%/bin,cmd,gradle -v
2、spring4 用jdk8 下载 https://jdk8.java.
- mysql连接拒绝问题
daizj
mysql登录权限
mysql中在其它机器连接mysql服务器时报错问题汇总
一、[running]
[email protected]:~$mysql -uroot -h 192.168.9.108 -p //带-p参数,在下一步进行密码输入
Enter password: //无字符串输入
ERROR 1045 (28000): Access
- Google Chrome 为何打压 H.264
dsjt
applehtml5chromeGoogle
Google 今天在 Chromium 官方博客宣布由于 H.264 编解码器并非开放标准,Chrome 将在几个月后正式停止对 H.264 视频解码的支持,全面采用开放的 WebM 和 Theora 格式。
Google 在博客上表示,自从 WebM 视频编解码器推出以后,在性能、厂商支持以及独立性方面已经取得了很大的进步,为了与 Chromium 现有支持的編解码器保持一致,Chrome
- yii 获取控制器名 和方法名
dcj3sjt126com
yiiframework
1. 获取控制器名
在控制器中获取控制器名: $name = $this->getId();
在视图中获取控制器名: $name = Yii::app()->controller->id;
2. 获取动作名
在控制器beforeAction()回调函数中获取动作名: $name =
- Android知识总结(二)
come_for_dream
android
明天要考试了,速速总结如下
1、Activity的启动模式
standard:每次调用Activity的时候都创建一个(可以有多个相同的实例,也允许多个相同Activity叠加。)
singleTop:可以有多个实例,但是不允许多个相同Activity叠加。即,如果Ac
- 高洛峰收徒第二期:寻找未来的“技术大牛” ——折腾一年,奖励20万元
gcq511120594
工作项目管理
高洛峰,兄弟连IT教育合伙人、猿代码创始人、PHP培训第一人、《细说PHP》作者、软件开发工程师、《IT峰播》主创人、PHP讲师的鼻祖!
首期现在的进程刚刚过半,徒弟们真的很棒,人品都没的说,团结互助,学习刻苦,工作认真积极,灵活上进。我几乎会把他们全部留下来,现在已有一多半安排了实际的工作,并取得了很好的成绩。等他们出徒之日,凭他们的能力一定能够拿到高薪,而且我还承诺过一个徒弟,当他拿到大学毕
- linux expect
heipark
expect
1. 创建、编辑文件go.sh
#!/usr/bin/expect
spawn sudo su admin
expect "*password*" { send "13456\r\n" }
interact
2. 设置权限
chmod u+x go.sh 3.
- Spring4.1新特性——静态资源处理增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- idea ubuntuxia 乱码
liyonghui160com
1.首先需要在windows字体目录下或者其它地方找到simsun.ttf 这个 字体文件。
2.在ubuntu 下可以执行下面操作安装该字体:
sudo mkdir /usr/share/fonts/truetype/simsun
sudo cp simsun.ttf /usr/share/fonts/truetype/simsun
fc-cache -f -v
- 改良程序的11技巧
pda158
技巧
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。
让我们看一些基本的编程技巧:
尽量保持方法简短
永远永远不要把同一个变量用于多个不同的
- 300个涵盖IT各方面的免费资源(下)——工作与学习篇
shoothao
创业免费资源学习课程远程工作
工作与生产效率:
A. 背景声音
Noisli:背景噪音与颜色生成器。
Noizio:环境声均衡器。
Defonic:世界上任何的声响都可混合成美丽的旋律。
Designers.mx:设计者为设计者所准备的播放列表。
Coffitivity:这里的声音就像咖啡馆里放的一样。
B. 避免注意力分散
Self Co
- 深入浅出RPC
uule
rpc
深入浅出RPC-浅出篇
深入浅出RPC-深入篇
RPC
Remote Procedure Call Protocol
远程过程调用协议
它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议。RPC协议假定某些传输协议的存在,如TCP或UDP,为通信程序之间携带信息数据。在OSI网络通信模型中,RPC跨越了传输层和应用层。RPC使得开发