- c++ opencv4.3 sift匹配
图像处理大大大大大牛啊
图像处理opencv实战代码讲解opencvsiftc++opencv4特征点
c++opencv4.3sift匹配main.cppintmain(){vectorkeypoints1,keypoints2;Matimg1,img2,descriptors1,descriptors2;intnumF
- 特征点提取与匹配原文论文下载
长沙有肥鱼
视觉SLAM十四讲计算机视觉
ORB原文下载链接:(PDF)ORB:anefficientalternativetoSIFTorSURFSIFT原文下载链接:https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdfSURF原文下载链接:https://www.cs.jhu.edu/~misha/ReadingSeminar/Papers/Bay08.pdfORB和AKAZE对比论文下载链接:h
- Python计算机视觉编程——第二章 局部图像描述子
adchloe
python计算机视觉开发语言
目录1Harris角点检测器2SIFT2.1兴趣点2.2描述子2.3检测兴趣点2.4匹配描述子1Harris角点检测器Harris角点检测算法是简单的角点检测算法,主要思想是,如果像素周围显示存在多于一个方向的边,认为该点为兴趣点,称为角点。把图像域中点x上的对称半正定矩阵Mr=Ml(x)M_{r}=M_{l}(\mathbf{x})Mr=Ml(x)定义为:M1=∇I ∇IT=[IxIy][IxI
- opencv “未声明的标识符:SurfFeatureDetector”问题解决办法
adsdriver
Opencv学习点滴opencv特征点检测未声明的标识符SurfFeaturDetector
在VS中使用opencv2.4.X版本的时候,如果使用SurfFeatureDetector(或者SiftFeatureDetector)做特征点检测的时候,按照官方文档上的示例代码include头文件为:opencv2/features2d/features2d.hpp,则会出现如下报错:errorC2065:“SurfFeatureDetector”:未声明的标识符。1、实际上2.4.X版本的
- 基于Python-OpenCV的角点检测、直线检测、椭圆检测、矩形检测
童鸢
pythonopencv开发语言
目录概要一、角点检测1.Harris角点检测2.Shi-Tomas算法3.SIFT算法4.FAST算法概要本博客梳理了几种常见的**角点检测、直线检测、椭圆检测、矩形检测**算法,本博客只关注代码,不关注每种算法的原理。一、角点检测常见的角点检测方法有Harris角点检测、Shi-Tomas算法角点检测、sift算法角点检测、fast角点检测、ORM算法角点检测。1.Harris角点检测impor
- 05基于卷积神经网络-支持向量机(自动寻优)CNN-SVM数据分类算法
机器不会学习CSJ
cnn支持向量机分类人工智能
CNN原理卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种深度学习模型,广泛用于计算机视觉领域。CNN的核心思想是通过卷积层和池化层来自动提取图像中的特征,从而实现对图像的高效处理和识别。在传统的机器学习方法中,图像特征的提取通常需要手工设计的特征提取器,如SIFT、HOG等。而CNN则可以自动从数据中学习到特征表示。这是因为CNN模型的卷积层使用了一系列的卷积核
- R-CNN、Fast R-CNN、Faster R-CNN实现
今 晚 打 老 虎
面试之CV基础知识深度学习点滴
R-CNN:传统的目标检测算法:使用穷举法(不同大小比例的滑窗)进行区域选择,时间复杂度高对提取的区域进行特征提取(HOG或者SIFT),对光照、背景等鲁棒性差使用分类器对提取的特征进行分类(SVM或Adaboost)R-CNN的过程:采用SelectiveSearch生成类别独立的候选区域使用AlexNet来提取特征,输入是227*227*3,输出是4096将4096维的特征向量送入SVM来分类
- 03-堆排序(Heap Sort)
ducktobey
堆排序(HeapSort)结合上一讲的内容,发现选择排序可以使用堆排序来进行优化。所以堆排序可以认为是对选择排序的一种优化。因为利用堆来获取最大值时,发现与选择排序时做的事情差不多。堆排序的执行流程如下对序列进行原地建堆(heapify)重复执行以下操作,直到堆的元素数量为1交换堆顶元素与尾元素堆的元素减1对0位置进行一次siftDown操作假设现在得到的数据如下将这些数据进行原地建堆后,得到的结
- Verilog刷题笔记25
十六追梦记
笔记
题目:You’realreadyfamiliarwithbitwiseoperationsbetweentwovalues,e.g.,a&bora^b.Sometimes,youwanttocreateawidegatethatoperatesonallofthebitsofonevector,like(a[0]&a[1]&a[2]&a[3]…),whichgetstediousifthevect
- 图像搜索和分类
顽皮的石头7788121
基于内容的搜索检索在视觉上具有相似性的图像,在图像数据库中返回具相似颜色、纹理和物体以及场景的图像。视觉单词通常通过特征描述子(SIFT)等结合聚类算法得到聚类质心。用视觉单词直方图来表示一个图像。图像索引根据图像特征分别建立索引,以索引的方式搜索图像。图像分类图像分类算法类似,提取关键特征,以机器学习方法进行分类
- Airtest使用的图像识别算法识别比较慢解决办法,改变算法的运算顺序或者指定一种算法,提高Airtest图像识别效率
大数据采集及分析
服务器
Airtest使用的图像识别算法识别比较慢解决办法,改变算法的运算顺序或者指定一种算法,提高Airtest图像识别效率调整Airtest图像识别算法的使用顺序fromairtest.core.settingsimportSettingsasST#调整Airtest图像识别算法的使用顺序ST.CVSTRATEGY=["mstpl","tpl","sift","brisk"]指定一种算法(mstpl算
- 数字图像处理(实践篇)四十三 OpenCV-Python 使用SURF算法检测图像上的特征点的实践
Jackilina_Stone
数字图像处理(入门篇实践篇综合篇)python数字图像处理计算机视觉OpenCV
目录一SURF算法概述1积分图2SURF算法3SIFT与SURF二涉及的函数三实践一SURF算法概述
- 质数筛—欧拉筛,一步一步的剖析
LINGLCY
算法
本篇我们来一点点剖析欧拉筛算法首先贴上完整代码(以封装成函数的形式呈现),n为要求质数的范围#defineN10000000longlongzs[N]={0},size=0;charnotzs[N]={1,1};voidEuler_sift(intn){for(inti=2;in)break;notzs[zs[j]*i]=1;if(i%zs[j]==0)break;}}}欧拉筛的时间复杂度为o(n
- CVPR 2023: SFD2 Semantic-Guided Feature Detection and Description
结构化文摘
sketchui分层架构
我们使用以下6个分类标准对本文的研究选题进行分析:1.特征提取方法:手工特征:这些是手动设计的特征,例如SIFT、SURF、ORB等,它们依靠手工制作的描述符来表示图像块。它们通常速度快且计算效率高,但可能无法捕捉场景的全部复杂性。学习特征:这些特征是使用深度学习技术(例如卷积神经网络(CNN))从数据中自动学习的。它们可以捕捉像素之间更复杂的关系,并有可能获得更好的性能,但计算成本可能很高。语义
- Opencv学习笔记——特征匹配
纸箱里的猫咪
Opencv学习笔记opencv计算机视觉学习
文章目录Brute-Force蛮力匹配1对1的匹配k对最佳匹配随机抽样一致算法(Randomsampleconsensus,RANSAC)单应性矩阵Brute-Force蛮力匹配 通过SIFT算法可以得到图像关键点,通过比较两张图像的关键点,也就是比较关键点向量之间的差异,Brute-Force蛮力匹配通过比较特征向量,离得最近的特征向量也就是最相似的。默认的是用归一化的欧氏距离。bf=cv2.
- 如何过滤离线logcat日志文件?
helloworld1238888
android-studiojava
1.需求:HowdidAndroidStudioLogcattoreadthefileswhichhavesaveinlogcat?IsavedsomelogsandwouldliketoopenthemwithAndroidStudio-Logcatinterfaceandbeabletoseethecoloursandapplysomefiltersjustasifthephonewascon
- 02神经网络的学习及代码实现
我闻 如是
神经网络学习人工智能
“学习”是指从训练数据中自动获取最优权重参数的过程。引入损失函数指标,学习的目的是以该损失函数为基准,找出尽可能小的损失函数的值。1、从数据中学习从数据中学习规律,模式,避免人为介入。先从图像中提取特征量,再用机器学习技术学习这些特征量的模式。常用的特征量包括SIFT、SURF和HOG等,使用特征量将图像数据转换为向量,然后对转换后的向量使用SVM、KNN等分类器进行学习。这种方法也需要人工设计特
- R-CNN阅读笔记
tang-0203
R-CNN系列文章R-CNN阅读笔记目标检测VOC
原文地址:http://blog.csdn.net/hjimce/article/details/50187029作者:hjimce一、相关理论过去十年在许多视觉识别任务中主要流行的是SIFT与HOG(这两种方法都是基于图像中梯度方向直方图的特征提取方法),但在过去十年中的进步非常缓慢。R-CNN是第一次将CNN用到目标检测领域上来的算法。(待确认)本篇博文主要讲解2014年CVPR上的经典pap
- 12.2 关键点提取——SIFT
YANQ662
7.数据处理计算机视觉人工智能
一、理论文章看了以下博文:Sift中尺度空间、高斯金字塔、差分金字塔(DOG金字塔)、图像金字塔-CSDN博客该文章对SIFT写的很详细,所以在这里我直接抄过来作为笔记。如果以后作者变为付费文章可以提醒我删除。1.图像金字塔图像金字塔是一种以多分辨率来解释图像的结构,通过对原始图像进行多尺度像素采样的方式,生成N个不同分辨率的图像。把具有最高级别分辨率的图像放在底部,以金字塔形状排列,往上是一系列
- 计算机视觉-PCV包、Vlfeat库、Graphviz库的下载安装配置及问题解决(使用anaconda3 & python 3.8.5)
yt_0618
python开发语言
目录一、PCV包配置二、Vlfeat配置三、在PCV包的sift.py文件中对路径进行修改四、以上步骤所需注意的错误五、Graphviz配置一、PCV包配置1.下载PCV包,点开网址直接下载安装包(不用解压),下载之后将安装包放在任意目录位置https://codeload.github.com/Li-Shu14/PCV/zip/masterhttps://codeload.github.com/
- Queue集合之PriorityBlockingQueue详解
乐乐Java路漫漫
队列java队列java数据结构
集合系列文章文章目录集合系列文章前言1、PriorityBlockingQueue是什么?2、查看类图接口3.源码解析3.1构造器3.2offer操作3.2.1扩容3.2.2建堆算法3.2.3图文解释3.3poll操作3.3.1dequeue出队源码3.3.2siftDownComparable堆调整源码总结前言1、PriorityBlockingQueue是什么?集合中无界优先队列priorit
- 数字图像处理(实践篇)四十一 OpenCV-Python 使用sift算法检测图像上的特征点实践
Jackilina_Stone
数字图像处理(入门篇实践篇综合篇)pythonOpenCV数字图像处理计算机视觉
目录一涉及的函数二实践2004年,D.Lowe在论文DistinctiveImageFeaturesfromScale-InvariantKeypoints中提出了一种新算法,即尺度不变特征变换(SIFT),该算法提取关键点并计算其描述符。SIFT提取图像的局部特征,在尺度空间寻找极值点,并提取出其位置尺度和方向信息。SIFT算法所查找的关键点都是一些十分突出,不会因光照仿射变换和噪声等因素而变换
- [opencvsharp]C#基于Fast算法实现角点检测
FL1623863129
C#算法
角点检测算法有很多,比如Harris角点检测、Shi-Tomas算法、sift算法、SURF算法、ORB算法、BRIEF算法、Fast算法等,今天我们使用C#的opencvsharp库实现Fast角点检测【算法介绍】fast算法Fast(全称Featuresfromacceleratedsegmenttest)是一种用于角点检测的算法,该算法的原理是取图像中检测点,以该点为圆心的周围邻域内像素点判
- [C#][opencvsharp]opencvsharp sift和surf特征点匹配
FL1623863129
C#人工智能机器学习算法
SIFT特征和SURF特征比较SIFT特征基本介绍SIFT(Scale-InvariantFeatureTransform)特征检测关键特征:建立尺度空间,寻找极值关键点定位(寻找关键点准确位置与删除弱边缘)关键点方向指定关键点描述子建立尺度空间,寻找极值工作原理构建图像高斯金字塔,求取DOG,发现最大与最小值在每一级构建的高斯金字塔,每一层根据sigma的值不同,可以分为几个待级,最少有4个。关
- 【知识---图像特征提取算法--尺度不变特征变换(Scale-Invariant Feature Transform, SIFT)原理、特点、应用场合及代码】
fyc300
算法计算机视觉图像处理人工智能ubuntu
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、尺度不变特征变换(Scale-InvariantFeatureTransform,SIFT)原理:二、尺度不变特征变换的特点:三、尺度不变特征变换的不足:四、尺度不变特征变换的应用场合:五、尺度不变特征变换的代码示例:总结前言图像特征提取是计算机视觉领域中的一个重要任务,它有助于将图像转换为可用于分析和识别的数值表示。
- 计算机视觉的基本概念和技术有哪些?
shanshan2099
计算机视觉人工智能
计算机视觉是一种让计算机能够“看”和理解图像和视频的技术。以下是一些基本的计算机视觉的概念和技术:图像处理:这是计算机视觉的基础,包括图像的基本操作,如滤波、边缘检测、色彩空间转换等。特征提取:这是从图像中提取有用信息的过程,例如SIFT、SURF、HOG等。目标检测和识别:这是识别图像中特定对象的过程,例如使用Haar级联、R-CNN、YOLO等技术。深度学习:这是一种强大的机器学习技术,被广泛
- 第七讲 视觉里程计(特征点法)
mjwz5294
前段的作用就是‘估算运动’,后段的作用的对前段的结果进行优化统一。前端根据相邻图像的信息估计出粗略的相机运动信息,作为后端的初始值。前端的实现,根据是否需要提取特征点,分为特征点法和直接法。一、特征点法:1、图像特征是一组与计算任务相关的信息,计算任务取决于具体的应用2、特征点在相机移动后能够保持稳定3、特征点性质:可重复性、可区别性、高效率、本地性4、关键点、描述子5、SIFT特征、FAST关键
- 图像处理常用算法介绍
竹叶青lvye
程序员的数学图像处理计算机视觉人工智能
此篇简单回顾下图像处理领域常用到的一些算法,这边只对每个知识点重要的点做一些记录,便于快速的知其形,会其意。一.SIFT(Scale-Invariantfeaturetransform)特征重点是了解DOG(DifferenceofGaussian)高斯差分图像是如何生成的,以及求取关键点,求取关键点的主方向,并以此主方向来做坐标系,梯度方向和梯度幅值按新的坐标系进行计算,构造一个特征向量描述子。
- Opencv C++ SIFT特征提取(单图像,多图像)+如何设置阈值+如何对文件夹进行批处理+如何设置掩膜裁剪影像
海棠RS
OpenCV-工程向opencv人工智能计算机视觉c++
一、何谓SITF特征提取,它有什么作用?SIFT(Scale-InvariantFeatureTransform)是一种用于图像处理和计算机视觉的特征提取算法。由DavidLowe于1999年首次提出,它是一种非常有效的局部特征描述符,具有尺度不变性、旋转不变性和对部分遮挡的鲁棒性。SIFT特征提取的主要步骤包括:尺度空间极值检测(Scale-SpaceExtremaDetection):通过不同
- SIFT特征提取及其opencv实现
小方爱自律
CVCV
SIFT特征提取及其opencv实现SIFT特征提取算法的实质是寻找图像中对位置、尺度、旋转等保持不变的关键点,其步骤主要有如下四步:尺度空间极值检测:搜索所有尺度上的图像位置。通过高斯微分函数来识别潜在的对于尺度和旋转不变的兴趣点。关键点定位:在每个候选的位置上,通过一个拟合精细的模型来确定位置和尺度。关键点的选择依据于它们的稳定程度。方向确定:基于图像局部的梯度方向,分配给每个关键点位置一个或
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla