大意:平面上有n个Majestix(红点)和m个Cleverdix(蓝点),是否存在一条直线,使得任取一个红点和一个蓝点都在直线的异侧?这条直线不能穿过红点或蓝点?
思路:分离两个点集的充要条件是分离两个凸包,首先求出两个凸包。
然后判断这两个凸包是否有公共部分,则只需:
1、判断任何一个红点不在蓝点的内部,蓝点类似。
2、红凸包上的任意一条边与蓝凸包没有交点(包括端点)。
判断1时,判断是否在凸包内外部的同时还判断端点是否相等,这样在判断2时可以直接判断是不是规范相交。
判断2时,直接判断是否规范相交即可。
如果有1个凸包退化成了点或者线也没关系,因为上面两种判断覆盖了这种情况。
#include <iostream> #include <cstdlib> #include <cstdio> #include <string> #include <cstring> #include <cmath> #include <vector> #include <queue> #include <stack> #include <algorithm> using namespace std; const double eps = 1e-10; const double PI = acos(-1.0); struct Point { double x, y; Point(double x = 0, double y = 0) : x(x), y(y) { } bool operator < (const Point& a) const { if(a.x != x) return x < a.x; return y < a.y; } }; typedef Point Vector; Vector operator + (Vector A, Vector B) { return Vector(A.x+B.x, A.y+B.y); } Vector operator - (Point A, Point B) { return Vector(A.x-B.x, A.y-B.y); } Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); } Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); } int dcmp(double x) { if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; } bool operator == (const Point& a, const Point &b) { return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0; } double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; } double Length(Vector A) { return sqrt(Dot(A, A)); } double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); } double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; } double Area2(Point A, Point B, Point C) { return fabs(Cross(B-A, C-A)) / 2; } Vector Rotate(Vector A, double rad) { return Vector(A.x*cos(rad)-A.y*sin(rad), A.x*sin(rad) + A.y*cos(rad)); } Point GetLineIntersection(Point P, Vector v, Point Q, Vector w) { Vector u = P-Q; double t = Cross(w, u) / Cross(v, w); return P+v*t; } bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2) { double c1 = Cross(a2-a1, b1-a1), c2 = Cross(a2-a1, b2-a1); double c3 = Cross(b2-b1, a1-b1), c4 = Cross(b2-b1, a2-b1); return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0; } bool OnSegment(Point p, Point a1, Point a2) { return dcmp(Cross(a1-p, a2-p)) == 0 && dcmp(Dot(a1-p, a2-p)) < 0; } double PolygonArea(Point* p, int n) { double area = 0; for(int i = 1; i < n-1; i++) area += Cross(p[i]-p[0], p[i+1]-p[0]); return area/2; } double PointDistanceToLine(Point P, Point A, Point B) { Vector v1 = B-A, v2 = P-A; return fabs(Cross(v1, v2)) / Length(v1); } double PointDistanceToSegment(Point P, Point A, Point B) { if(A == B) return Length(P-A); Vector v1 = B-A, v2 = P-A, v3 = P-B; if(dcmp(Dot(v1, v2) < 0)) return Length(v2); else if(dcmp(Dot(v1, v3) > 0)) return Length(v3); else return fabs(Cross(v1, v2)) / Length(v1); } int isPointInPolygon(Point p, Point *poly, int n) { int wn = 0; for(int i = 0; i < n; i++) { const Point& p1 = poly[i], p2 = poly[(i+1)%n]; if(p == p1 || p == p2 || OnSegment(p, p1, p2)) return -1; int k = dcmp(Cross(p2-p1, p-p1)); int d1 = dcmp(p1.y - p.y); int d2 = dcmp(p2.y - p.y); if(k > 0 && d1 <= 0 && d2 > 0) wn++; if(k < 0 && d2 <= 0 && d1 > 0) wn--; } if(wn != 0) return 1; return 0; } int ConvexHull(Point *p, int n, Point *ch) //凸包 { sort(p, p+n); n = unique(p, p+n) - p; //去重 int m = 0; for(int i = 0; i < n; i++) { while(m > 1 && Cross(ch[m-1]-ch[m-2], p[i]-ch[m-2]) <= 0) m--; ch[m++] = p[i]; } int k = m; for(int i = n-2; i >= 0; i--) { while(m > k && Cross(ch[m-1]-ch[m-2], p[i]-ch[m-2]) <= 0) m--; ch[m++] = p[i]; } if(n > 1) m--; return m; } int n, m; const int maxn = 1010; Point P[maxn], red[maxn], Q[maxn], blue[maxn]; Point read_point() { Point A; scanf("%lf%lf", &A.x, &A.y); return A; } int read_case() { scanf("%d%d", &n, &m); if(!n && !m) return 0; for(int i = 0; i < n; i++) P[i] = read_point(); for(int i = 0; i < m; i++) Q[i] = read_point(); return 1; } int CheckConvexHullDisjoint() { int newn = ConvexHull(P, n, red); int newm = ConvexHull(Q, m, blue); for(int i = 0; i < newn; i++) if(isPointInPolygon(red[i], blue, newm)) return 0; for(int i = 0; i < newm; i++) if(isPointInPolygon(blue[i], red, newn)) return 0; for(int i = 0; i < newn; i++) { for(int j = 0; j < newm; j++) { if(SegmentProperIntersection(red[i], red[(i+1)%newn], blue[j], blue[(j+1)%newm])) return 0; } } return 1; } void solve() { if(CheckConvexHullDisjoint()) printf("Yes\n"); else printf("No\n"); } int main() { while(read_case()) { solve(); } return 0; }