I hope you know the beautiful Union-Find structure. In this problem, you're to implement something similar, but not identical.
The data structure you need to write is also a collection of disjoint sets, supporting 3 operations:
1 p q
Union the sets containing p and q. If p and q are already in the same set, ignore this command.
2 p q
Move p to the set containing q. If p and q are already in the same set, ignore this command
3 p
Return the number of elements and the sum of elements in the set containing p.
Initially, the collection contains n sets: {1}, {2}, {3}, ..., {n}.
There are several test cases. Each test case begins with a line containing two integers n and m (1<=n,m<=100,000), the number of integers, and the number of commands. Each of the next m lines contains a command. For every operation, 1<=p,q<=n. The input is terminated by end-of-file (EOF). The size of input file does not exceed 5MB.
For each type-3 command, output 2 integers: the number of elements and the sum of elements.
5 7 1 1 2 2 3 4 1 3 5 3 4 2 4 1 3 4 3 3
3 12 3 7 2 8
Initially: {1}, {2}, {3}, {4}, {5}
Collection after operation 1 1 2: {1,2}, {3}, {4}, {5}
Collection after operation 2 3 4: {1,2}, {3,4}, {5} (we omit the empty set that is produced when taking out 3 from {3})
Collection after operation 1 3 5: {1,2}, {3,4,5}
Collection after operation 2 4 1: {1,2,4}, {3,5}
Rujia Liu's Present 3: A Data Structure Contest Celebrating the 100th Anniversary of Tsinghua University
Special Thanks: Yiming Li
Note: Please make sure to test your program with the gift I/O files before submitting!
这题是受luyuncheng的启发做出来的。
本题的难点就在2操作:
要把一个元素从一个集合移到另一个集合。
我们知道并查集是不能删除元素的,因为整个结构是单向的,不知道儿子是什么
但这里移动元素,实际上就蕴含着删除的操作。那该怎么办呢?
有一个想法可能会很快想到,并不实际删除要移动的元素p,即不改变p集合原来的路径,但集合的权值还是要改变(相当于把p看成一个虚点),然后把p直接“挂到”q的集合中去。
注意,这里一定要保证p在以后永远只能作为一个叶子,不能再做父亲,否则会覆盖掉最初(作为父亲时)的路径,并且可以证明只做叶子的做法一定存在。
这样在写程序时要注意的就有以下几点:
1.让每个元素的值有二维状态,一维用于保存,这个元素在最初集合时的情况,另一维保存这个元素现在实际的情况
2.在合并时注意权值的改变,应该用哪一维状态。
3.在find()时先判断这个元素是否真的存在过去和现在两个状态,从而选择搜索的路径不同,并且在写路径压缩时也有些不同。
详见代码:
#include <cstdio> struct Node{ int fa[2],num[2],value[2]; }ele[100005]; void init(){ for(int i = 0;i < 100005;i++){ ele[i].fa[0] = i; ele[i].fa[1] = -1; ele[i].num[0] = 1; ele[i].num[1] = 0; ele[i].value[0] = i; ele[i].value[1] = 0; } } int find(int n){ if(ele[n].fa[1] == -1){ int r = ele[n].fa[0]; while(ele[r].fa[0] != r) r = ele[r].fa[0]; int f = ele[n].fa[0]; while(f != r){ int tem = ele[f].fa[0]; ele[f].fa[0] = r; f = tem; } return r; } else{ int f = ele[n].fa[1]; while(ele[f].fa[0] != f){ f = ele[f].fa[0]; } ele[n].fa[1] = f; return f; } } int n,m; int main(){ while(scanf("%d%d",&n,&m) != EOF){ init(); while(m--){ int ope,p,q; scanf("%d",&ope); if(ope == 1){ scanf("%d%d",&p,&q); int f1 = find(p); int f2 = find(q); if(f1 != f2){ ele[f1].fa[0] = f2; ele[f2].num[0] += ele[f1].num[0]; ele[f2].value[0] += ele[f1].value[0]; } } else if(ope == 2){ scanf("%d%d",&p,&q); int f1 = find(p); int f2 = find(q);//忘了加if(f1 != f2),慢了一些 ele[f1].num[0]--; ele[f1].value[0] -= p; ele[p].fa[1] = f2; ele[f2].num[0]++; ele[f2].value[0] += p; } else{ scanf("%d",&p); int f = find(p); printf("%d %d\n",ele[f].num[0],ele[f].value[0]); } } } return 0; }