- 使用 pgvector 将 PostgreSQL 与语义搜索/RAG 集成的教程
azzxcvhj
postgresql人工智能数据库python
技术背景介绍在大语言模型(LLMs)和语义搜索的兴起中,结合结构化的关系型数据库(如PostgreSQL)进行增强型查询变得越来越有价值。这种方法常用于RAG(Retrieval-AugmentedGeneration)场景,例如FAQ问答、文档检索、推荐系统等。pgvector是用于PostgreSQL的一个扩展,它支持稠密向量的存储和操作。通过pgvector,可以将嵌入向量直接存储在数据库中
- 【Codex】Evaluating Large Language Models Trained on Code
NLP_wendi
深度学习Transformerdeeplearning人工智能
这篇文章来解读最近比较有意思的Transformer预训练模型在自动生成代码方面的应用,PaperLink:EvaluatingLargeLanguageModelsTrainedonCode自动生成Code系列文章解读:【AlphaCode】Competition-LevelCodeGenerationwithAlphaCodeAbstract我们提出了Codex模型,基于GPT的模型架构,在G
- 【论文笔记】AutoML: A survey of the state-of-the-art(下篇)
pip install USART
学习笔记论文阅读记录论文阅读算法深度学习
目录4.ModelGeneration模型生成4.1SearchSpace搜索空间4.1.1Entire-structuredsearchspace基于整个架构的4.1.2Cell-basedsearchspace基于Cell的空间4.1.3Hierarchicalsearchspace层次化的空间4.1.3Morphism-basedsearchspace基于“态射”的空间4.2网络优化方法(搜
- 语义缓存:提升 RAG 性能的关键策略
大模型之路
RAG缓存RAG检索增强生成LLM大模型
检索增强生成(Retrieval-AugmentedGeneration,简称RAG)(RAG综述:探索检索增强生成技术的多样性与代码实践)技术已经成为构建高性能AI模型的重要基石。RAG通过结合先进的语言模型与外部知识检索,能够生成既准确又富含上下文的响应。然而,尽管RAG功能强大,但它也伴随着一系列挑战,如高令牌消耗(tokenconsumption)、运营成本的增加以及响应时间的延长。这些问
- 【大模型应用开发 动手做AI Agent】AutoGen
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
【大模型应用开发动手做AIAgent】AutoGen关键词:自动生成(AutoGeneration)AI代理(Agent)大型语言模型AutoGen框架自定义任务生成1.背景介绍1.1问题的由来在当今的AI领域,大型语言模型因其强大的文本生成能力而受到广泛关注。这些模型通常在大规模文本数据集上进行预训练,以便能够生成与上下文相关的高质量文本。然而,对于特定领域或特定任务的需求,往往需要对这些通用模
- 使用 GPT-crawler 构建 RAG 应用的完整指南
sagvWSRJHMNEB
gpt爬虫人工智能python
随着生成式AI技术的迅猛发展,如何高效地利用GPT模型进行信息抽取和知识增强(RAG:Retrieval-AugmentedGeneration)成为了开发者关注的焦点。本文将深入探讨如何使用gpt-crawler工具来抓取网页内容并在LangChain项目中实现RAG应用。技术背景介绍在生成式AI应用中,RAG是一种结合信息检索和生成技术的方法。通过将外部知识融入到生成模型中,RAG能够在特定领
- 使用LangChain构建基于RAG技术的智能问答系统:深入解析与实战指南
m0_57781768
langchain
使用LangChain构建基于RAG技术的智能问答系统:深入解析与实战指南近年来,随着大语言模型(LLMs)的迅猛发展,基于LLM的复杂问答系统(Q&AChatbot)逐渐成为人工智能领域的热门应用之一。这类应用程序可以基于特定的文本信息源回答用户提出的问题,在实际应用中非常有价值。而实现这些强大功能的核心技术之一,便是检索增强生成(RetrievalAugmentedGeneration,RAG
- 使用RAG-Chroma与OpenAI构建高效问答系统
srudfktuffk
人工智能python
在AI驱动的应用场景中,检索增强生成(Retrieval-AugmentedGeneration,RAG)是一种强大的技术,可以提升问答系统的精度和效能。在这篇文章中,我们将深入探讨如何使用Chroma与OpenAI结合,构建一个基于RAG的问答系统。技术背景介绍RAG是一种结合信息检索(IR)和自然语言生成(NLG)的技术。它通过先检索与问题相关的信息,然后生成答案,提高了问答系统的准确性和相关
- 利用Ollama和OpenAI实现多查询RAG检索
jkgSFS
前端javascript开发语言python
在这篇文章中,我们将探讨如何结合使用Ollama和OpenAI的多查询检索技术(RAG)来增强信息检索的准确性和效率。多查询检索器是一种查询转换的例子,它基于用户的输入查询生成多个不同视角的查询。对于每个查询,系统检索一组相关文档,并合并所有查询的独特联合体以进行答案合成。技术背景介绍RAG(Retrieval-AugmentedGeneration)是一种结合检索与生成的技术,它通过在生成答案之
- 探索未来视频创作:Tune-A-Video项目深度解析
刘通双Elsie
探索未来视频创作:Tune-A-Video项目深度解析Tune-A-Video[ICCV2023]Tune-A-Video:One-ShotTuningofImageDiffusionModelsforText-to-VideoGeneration项目地址:https://gitcode.com/gh_mirrors/tu/Tune-A-Video在数字艺术与人工智能的交汇点上,Tune-A-Vi
- NLP 中文拼写检测纠正论文 Automatic-Corpus-Generation 代码
后端java
拼写纠正系列NLP中文拼写检测实现思路NLP中文拼写检测纠正算法整理NLP英文拼写算法,如果提升100W倍的性能?NLP中文拼写检测纠正Paperjava实现中英文拼写检查和错误纠正?可我只会写CRUD啊!一个提升英文单词拼写检测性能1000倍的算法?单词拼写纠正-03-leetcodeedit-distance72.力扣编辑距离NLP开源项目nlp-hanzi-similar汉字相似度word-
- 【论文速读】| 利用大语言模型在灰盒模糊测试中生成初始种子
云起无垠
论文速读/精读语言模型p2p人工智能
基本信息论文标题:HarnessingLargeLanguageModelsforSeedGenerationinGreyb0xFuzzing作者:WenxuanShi,YunhangZhang,XinyuXing,JunXu作者单位:NorthwesternUniversity,UniversityofUtah关键词:Greyb0xfuzzing,LargeLanguageModels,Seed
- Elevate Your Lead Generation Game with Maps Scraper AI
程序员
RevolutionizingLeadGenerationTransformingLeadAcquisitionMapsScraperAIintroducesagroundbreakingapproachtoleadgenerationbyautomatingtheextractionofvaluabledatafromBingMapslistings.Thisinnovativemappingt
- Java面试题--JVM大厂篇之深入解析JVM中的Serial GC:工作原理与代际区别
青云交
Java大厂面试题Java虚拟机(JVM)专栏Java技术栈SerialGC工作原理年轻代垃圾回收MinorGC老年代垃圾回收MajorGCFullGC年轻代和老年代的区别SerialGC垃圾收集器单线程垃圾收集器
目录引言:正文:一、SerialGC工作原理年轻代垃圾回收(MinorGC):老年代垃圾回收(MajorGC或FullGC):二、年轻代和老年代的区别年轻代(YoungGeneration):老年代(OldGeneration):结束语:引言:Java虚拟机(JVM)作为Java程序的运行环境,其性能和稳定性在很大程度上依赖于垃圾收集器(GC)的效率。SerialGC是JVM中最古老也是最简单的一
- ROS 自定义msg
DIO哒
step1$roscd#进入package$mkdirmsg#创建msg目录step2在目录下新建Age.msgstep3修改CMakeList.txtstep4修改package.xml,加入message_generationmessage_runtimestep5到工作空间目录下,catkin_makestep6
- 推荐:FastAPI驱动的稳定扩散LLMs演示项目
褚知茉Jade
推荐:FastAPI驱动的稳定扩散LLMs演示项目FastAPI-for-Machine-Learning-Live-DemoThisrepositorycontainsthefilestobuildyourveryownAIimagegenerationwebapplication!OutlinedarethecorecomponentsoftheFastAPIwebframework,anda
- python(64) 内存的几个现象,主动释放内存
python开发笔记
Pythonpython
1.主动释放内存的方式在Python中使用gc.collect()方法清除内存使用del语句清除Python中的内存gc.collect(generation=2)方法用于清除或释放Python中未引用的内存。未引用的内存是无法访问且无法使用的内存。可选参数generation是一个整数,值的范围是0到2。它使用gc.collect()方法指定要收集的对象的生成。在Python中,寿命短的对象存储
- 茴香豆:搭建RAG 智能助理
不才妹妹
人工智能windowslinux
RAGRAG(RetrievalAugmentedGeneration)技术,通过检索与用户输入相关的信息片段,并结合外部知识库来生成更准确、更丰富的回答。解决LLMs在处理知识密集型任务时可能遇到的挑战,如幻觉、知识过时和缺乏透明、可追溯的推理过程等。提供更准确的回答、降低推理成本、实现外部记忆。1.在茴香豆Web版中创建自己领域的知识问答助手1.1配置镜像环境进入开发机后,从官方环境复制运行I
- OPENAI中RAG实现原理以及示例代码用PYTHON来实现
dzend
aigcpython开发语言ai
OPENAI中RAG实现原理以及示例代码用PYTHON来实现1.引言在当今人工智能领域,自然语言处理(NLP)是一个非常重要的研究方向。近年来,OPENAI发布了许多创新的NLP模型,其中之一就是RAG(Retrieval-AugmentedGeneration)模型。RAG模型结合了检索和生成两种方法,可以用于生成与给定问题相关的高质量文本。本文将介绍RAG模型的实现原理,并提供使用Python
- Java面试题--JVM大厂篇之深入解析G1 GC——革新Java垃圾回收机制
青云交
Java大厂面试题Java虚拟机(JVM)专栏Java技术栈javajvm开发语言G1GC的区域划分及其作用伊甸园区幸存者区老年代区
目录引言:正文:一、G1GC的区域划分及其作用1.伊甸园区(EdenRegion)2.幸存者区(SurvivorRegion)3.老年代区(OldGenerationRegion)二、区域划分的优势:三、图片解析:结束语:引言:在Java应用开发中,性能优化始终是一个重要而又棘手的话题。尤其是垃圾回收(GC)机制,常常是影响应用性能的关键因素。G1GarbageCollector(Garbage-
- MB-iSTFT-VITS 项目教程
邱敬镇
MB-iSTFT-VITS项目教程MB-iSTFT-VITSLightweightandHigh-FidelityEnd-to-EndText-to-SpeechwithMulti-BandGenerationandInverseShort-TimeFourierTransform项目地址:https://gitcode.com/gh_mirrors/mb/MB-iSTFT-VITS项目介绍MB-
- 探索MB-iSTFT-VITS:一款高效的语音合成工具
张姿桃Erwin
探索MB-iSTFT-VITS:一款高效的语音合成工具MB-iSTFT-VITSLightweightandHigh-FidelityEnd-to-EndText-to-SpeechwithMulti-BandGenerationandInverseShort-TimeFourierTransform项目地址:https://gitcode.com/gh_mirrors/mb/MB-iSTFT-V
- Example of an Automated SBOM Generation Using Syft
Chia-Te Kuan
分析工具c++SBOMSTQC
CONTENTWhyIneedaSBOMWhatisSBOMHowtobuildSBOM?IdentifyComponents:GatherMetadata:AutomateDependencyTracking:DocumentRelationshipsUpdateRegularlyValidateandVerifyGeneratetheSBOMIntegrateintoDevelopmentWo
- Unique3D:开启单张图片三维重建新篇章
余靖年Veronica
Unique3D:开启单张图片三维重建新篇章Unique3DOfficialimplementationofUnique3D:High-QualityandEfficient3DMeshGenerationfromaSingleImage项目地址:https://gitcode.com/gh_mirrors/un/Unique3D在当今高速发展的科技领域中,三维重建技术正以惊人的速度改变着我们的视
- python利用向量数据库chroma实现RAG检索增强生成
Cachel wood
LLM和AIGC阿里云云计算pythonflask开发语言RAGchroma
文章目录向量数据库chroma简介RAG简介RAG示例向量数据库chroma简介向量数据库chroma教程RAG简介RAG的全称是Retrieval-AugmentedGeneration,中文翻译为检索增强生成。它是一个为大模型提供外部知识源的概念,这使它们能够生成准确且符合上下文的答案,同时能够减少模型幻觉。知识更新问题最先进的LLM会接受大量的训练数据,将广泛的常识知识存储在神经网络的权重中
- GLM-4 (1) - 推理+概览
戴昊光
人工智能languagemodelnlppython
系列文章目录GLM-4(1)-推理+概览GLM-4(2)-RoPEGLM-4(3)-GLMBlockGLM-4(4)-SelfAttentionGLM-4(5)-API&FunctionCallingGLM-4(6)-KVCache/Prefill&Decode文章目录系列文章目录前言一、环境安装&跑通demo二、Tokenizer三、configsmodelconfiggenerationcon
- 奥巴马同性婚姻合法化演讲文稿
爱风城
Goodmorning.Ournationwasfoundedonabedrockprinciplethatweareallcreatedequal.Theprojectofeachgenerationistobridgethemeaningofthosefoundingwordswiththerealitiesofchangingtimes--anever-endingquesttoensure
- CLIP-Adapter: Better Vision-Language Models with Feature Adapters
Tsukinousag
对比语言图像预训练(CLIP)虽然prompt-tuning用于textualinputs,但是建议CLIPAdapter在视觉或语言分支上使用功能适配器进行fine-tuneCLIPAdapter采用了一个额外的瓶颈层来学习新的特征,并将剩余的特征与原始的预训练特征进行混合。为了更好地适应vision语言模型,使用功能适配器,而不是快速调整1.ClassifierWeightGeneration
- WeKnow-RAG:智能自适应的检索增强生成方法
步子哥
人工智能
在当今快速发展的人工智能领域,检索增强生成(Retrieval-AugmentedGeneration,RAG)方法逐渐成为一种新兴的解决方案。CobusGreyling在他最新的文章中深入探讨了WeKnow-RAG,这一方法通过结合知识图谱和网络搜索技术,极大地提升了大型语言模型(LLMs)在复杂查询中的表现。知识图谱的力量知识图谱(KnowledgeGraphs,KGs)作为信息检索的重要工具
- Phenaki——文本描述生成动画或视频,动态视频序列。
爱研究的小牛
AIGC—视频AIGC人工智能深度学习音视频
一、Phenaki介绍Phenaki是一个先进的视频生成系统,能够根据输入的文本描述生成连续且符合语义的视频内容。Phenaki的核心在于将文本描述转化为视频的过程,通过一系列深度学习技术实现高质量、流畅的视频生成。二、Phenaki核心功能1.文本到视频生成(Text-to-VideoGeneration)Phenaki的最重要功能是根据自然语言文本描述生成连续的视频。用户只需输入一段描述,模型
- 项目中 枚举与注解的结合使用
飞翔的马甲
javaenumannotation
前言:版本兼容,一直是迭代开发头疼的事,最近新版本加上了支持新题型,如果新创建一份问卷包含了新题型,那旧版本客户端就不支持,如果新创建的问卷不包含新题型,那么新旧客户端都支持。这里面我们通过给问卷类型枚举增加自定义注解的方式完成。顺便巩固下枚举与注解。
一、枚举
1.在创建枚举类的时候,该类已继承java.lang.Enum类,所以自定义枚举类无法继承别的类,但可以实现接口。
- 【Scala十七】Scala核心十一:下划线_的用法
bit1129
scala
下划线_在Scala中广泛应用,_的基本含义是作为占位符使用。_在使用时是出问题非常多的地方,本文将不断完善_的使用场景以及所表达的含义
1. 在高阶函数中使用
scala> val list = List(-3,8,7,9)
list: List[Int] = List(-3, 8, 7, 9)
scala> list.filter(_ > 7)
r
- web缓存基础:术语、http报头和缓存策略
dalan_123
Web
对于很多人来说,去访问某一个站点,若是该站点能够提供智能化的内容缓存来提高用户体验,那么最终该站点的访问者将络绎不绝。缓存或者对之前的请求临时存储,是http协议实现中最核心的内容分发策略之一。分发路径中的组件均可以缓存内容来加速后续的请求,这是受控于对该内容所声明的缓存策略。接下来将讨web内容缓存策略的基本概念,具体包括如如何选择缓存策略以保证互联网范围内的缓存能够正确处理的您的内容,并谈论下
- crontab 问题
周凡杨
linuxcrontabunix
一: 0481-079 Reached a symbol that is not expected.
背景:
*/5 * * * * /usr/IBMIHS/rsync.sh
- 让tomcat支持2级域名共享session
g21121
session
tomcat默认情况下是不支持2级域名共享session的,所有有些情况下登陆后从主域名跳转到子域名会发生链接session不相同的情况,但是只需修改几处配置就可以了。
打开tomcat下conf下context.xml文件
找到Context标签,修改为如下内容
如果你的域名是www.test.com
<Context sessionCookiePath="/path&q
- web报表工具FineReport常用函数的用法总结(数学和三角函数)
老A不折腾
Webfinereport总结
ABS
ABS(number):返回指定数字的绝对值。绝对值是指没有正负符号的数值。
Number:需要求出绝对值的任意实数。
示例:
ABS(-1.5)等于1.5。
ABS(0)等于0。
ABS(2.5)等于2.5。
ACOS
ACOS(number):返回指定数值的反余弦值。反余弦值为一个角度,返回角度以弧度形式表示。
Number:需要返回角
- linux 启动java进程 sh文件
墙头上一根草
linuxshelljar
#!/bin/bash
#初始化服务器的进程PId变量
user_pid=0;
robot_pid=0;
loadlort_pid=0;
gateway_pid=0;
#########
#检查相关服务器是否启动成功
#说明:
#使用JDK自带的JPS命令及grep命令组合,准确查找pid
#jps 加 l 参数,表示显示java的完整包路径
#使用awk,分割出pid
- 我的spring学习笔记5-如何使用ApplicationContext替换BeanFactory
aijuans
Spring 3 系列
如何使用ApplicationContext替换BeanFactory?
package onlyfun.caterpillar.device;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;
import
- Linux 内存使用方法详细解析
annan211
linux内存Linux内存解析
来源 http://blog.jobbole.com/45748/
我是一名程序员,那么我在这里以一个程序员的角度来讲解Linux内存的使用。
一提到内存管理,我们头脑中闪出的两个概念,就是虚拟内存,与物理内存。这两个概念主要来自于linux内核的支持。
Linux在内存管理上份为两级,一级是线性区,类似于00c73000-00c88000,对应于虚拟内存,它实际上不占用
- 数据库的单表查询常用命令及使用方法(-)
百合不是茶
oracle函数单表查询
创建数据库;
--建表
create table bloguser(username varchar2(20),userage number(10),usersex char(2));
创建bloguser表,里面有三个字段
&nbs
- 多线程基础知识
bijian1013
java多线程threadjava多线程
一.进程和线程
进程就是一个在内存中独立运行的程序,有自己的地址空间。如正在运行的写字板程序就是一个进程。
“多任务”:指操作系统能同时运行多个进程(程序)。如WINDOWS系统可以同时运行写字板程序、画图程序、WORD、Eclipse等。
线程:是进程内部单一的一个顺序控制流。
线程和进程
a. 每个进程都有独立的
- fastjson简单使用实例
bijian1013
fastjson
一.简介
阿里巴巴fastjson是一个Java语言编写的高性能功能完善的JSON库。它采用一种“假定有序快速匹配”的算法,把JSON Parse的性能提升到极致,是目前Java语言中最快的JSON库;包括“序列化”和“反序列化”两部分,它具备如下特征:  
- 【RPC框架Burlap】Spring集成Burlap
bit1129
spring
Burlap和Hessian同属于codehaus的RPC调用框架,但是Burlap已经几年不更新,所以Spring在4.0里已经将Burlap的支持置为Deprecated,所以在选择RPC框架时,不应该考虑Burlap了。
这篇文章还是记录下Burlap的用法吧,主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
 
- 【Mahout一】基于Mahout 命令参数含义
bit1129
Mahout
1. mahout seqdirectory
$ mahout seqdirectory
--input (-i) input Path to job input directory(原始文本文件).
--output (-o) output The directory pathna
- linux使用flock文件锁解决脚本重复执行问题
ronin47
linux lock 重复执行
linux的crontab命令,可以定时执行操作,最小周期是每分钟执行一次。关于crontab实现每秒执行可参考我之前的文章《linux crontab 实现每秒执行》现在有个问题,如果设定了任务每分钟执行一次,但有可能一分钟内任务并没有执行完成,这时系统会再执行任务。导致两个相同的任务在执行。
例如:
<?
//
test
.php
- java-74-数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
bylijinnan
java
public class OcuppyMoreThanHalf {
/**
* Q74 数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
* two solutions:
* 1.O(n)
* see <beauty of coding>--每次删除两个不同的数字,不改变数组的特性
* 2.O(nlogn)
* 排序。中间
- linux 系统相关命令
candiio
linux
系统参数
cat /proc/cpuinfo cpu相关参数
cat /proc/meminfo 内存相关参数
cat /proc/loadavg 负载情况
性能参数
1)top
M:按内存使用排序
P:按CPU占用排序
1:显示各CPU的使用情况
k:kill进程
o:更多排序规则
回车:刷新数据
2)ulimit
ulimit -a:显示本用户的系统限制参
- [经营与资产]保持独立性和稳定性对于软件开发的重要意义
comsci
软件开发
一个软件的架构从诞生到成熟,中间要经过很多次的修正和改造
如果在这个过程中,外界的其它行业的资本不断的介入这种软件架构的升级过程中
那么软件开发者原有的设计思想和开发路线
- 在CentOS5.5上编译OpenJDK6
Cwind
linuxOpenJDK
几番周折终于在自己的CentOS5.5上编译成功了OpenJDK6,将编译过程和遇到的问题作一简要记录,备查。
0. OpenJDK介绍
OpenJDK是Sun(现Oracle)公司发布的基于GPL许可的Java平台的实现。其优点:
1、它的核心代码与同时期Sun(-> Oracle)的产品版基本上是一样的,血统纯正,不用担心性能问题,也基本上没什么兼容性问题;(代码上最主要的差异是
- java乱码问题
dashuaifu
java乱码问题js中文乱码
swfupload上传文件参数值为中文传递到后台接收中文乱码 在js中用setPostParams({"tag" : encodeURI( document.getElementByIdx_x("filetag").value,"utf-8")});
然后在servlet中String t
- cygwin很多命令显示command not found的解决办法
dcj3sjt126com
cygwin
cygwin很多命令显示command not found的解决办法
修改cygwin.BAT文件如下
@echo off
D:
set CYGWIN=tty notitle glob
set PATH=%PATH%;d:\cygwin\bin;d:\cygwin\sbin;d:\cygwin\usr\bin;d:\cygwin\usr\sbin;d:\cygwin\us
- [介绍]从 Yii 1.1 升级
dcj3sjt126com
PHPyii2
2.0 版框架是完全重写的,在 1.1 和 2.0 两个版本之间存在相当多差异。因此从 1.1 版升级并不像小版本间的跨越那么简单,通过本指南你将会了解两个版本间主要的不同之处。
如果你之前没有用过 Yii 1.1,可以跳过本章,直接从"入门篇"开始读起。
请注意,Yii 2.0 引入了很多本章并没有涉及到的新功能。强烈建议你通读整部权威指南来了解所有新特性。这样有可能会发
- Linux SSH免登录配置总结
eksliang
ssh-keygenLinux SSH免登录认证Linux SSH互信
转载请出自出处:http://eksliang.iteye.com/blog/2187265 一、原理
我们使用ssh-keygen在ServerA上生成私钥跟公钥,将生成的公钥拷贝到远程机器ServerB上后,就可以使用ssh命令无需密码登录到另外一台机器ServerB上。
生成公钥与私钥有两种加密方式,第一种是
- 手势滑动销毁Activity
gundumw100
android
老是效仿ios,做android的真悲催!
有需求:需要手势滑动销毁一个Activity
怎么办尼?自己写?
不用~,网上先问一下百度。
结果:
http://blog.csdn.net/xiaanming/article/details/20934541
首先将你需要的Activity继承SwipeBackActivity,它会在你的布局根目录新增一层SwipeBackLay
- JavaScript变换表格边框颜色
ini
JavaScripthtmlWebhtml5css
效果查看:http://hovertree.com/texiao/js/2.htm代码如下,保存到HTML文件也可以查看效果:
<html>
<head>
<meta charset="utf-8">
<title>表格边框变换颜色代码-何问起</title>
</head>
<body&
- Kafka Rest : Confluent
kane_xie
kafkaRESTconfluent
最近拿到一个kafka rest的需求,但kafka暂时还没有提供rest api(应该是有在开发中,毕竟rest这么火),上网搜了一下,找到一个Confluent Platform,本文简单介绍一下安装。
这里插一句,给大家推荐一个九尾搜索,原名叫谷粉SOSO,不想fanqiang谷歌的可以用这个。以前在外企用谷歌用习惯了,出来之后用度娘搜技术问题,那匹配度简直感人。
环境声明:Ubu
- Calender不是单例
men4661273
单例Calender
在我们使用Calender的时候,使用过Calendar.getInstance()来获取一个日期类的对象,这种方式跟单例的获取方式一样,那么它到底是不是单例呢,如果是单例的话,一个对象修改内容之后,另外一个线程中的数据不久乱套了吗?从试验以及源码中可以得出,Calendar不是单例。
测试:
Calendar c1 =
- 线程内存和主内存之间联系
qifeifei
java thread
1, java多线程共享主内存中变量的时候,一共会经过几个阶段,
lock:将主内存中的变量锁定,为一个线程所独占。
unclock:将lock加的锁定解除,此时其它的线程可以有机会访问此变量。
read:将主内存中的变量值读到工作内存当中。
load:将read读取的值保存到工作内存中的变量副本中。
- schedule和scheduleAtFixedRate
tangqi609567707
javatimerschedule
原文地址:http://blog.csdn.net/weidan1121/article/details/527307
import java.util.Timer;import java.util.TimerTask;import java.util.Date;
/** * @author vincent */public class TimerTest {
 
- erlang 部署
wudixiaotie
erlang
1.如果在启动节点的时候报这个错 :
{"init terminating in do_boot",{'cannot load',elf_format,get_files}}
则需要在reltool.config中加入
{app, hipe, [{incl_cond, exclude}]},
2.当generate时,遇到:
ERROR