- 搞定leetcode面试经典150题之哈希算法
醒了就刷牙
LeetCode刷题哈希算法leetcode面试算法
系列博客目录搞定leetcode面试经典150题之哈希算法搞定leetcode面试经典150题之双指针搞定leetcode面试经典150题之滑动窗口文章目录系列博客目录理论知识1.哈希函数(HashFunction)2.哈希表(HashTable)通过HashMap实现3.哈希算法的应用4.哈希算法的时间复杂度编程理论1.HashSet的工作原理2.HashMap(哈希表)的工作原理3.哈希表中的
- 深入浅出 K 近邻算法:原理、实践与应用
烂蜻蜓
机器学习近邻算法算法
引言在机器学习的众多算法中,K近邻算法(K-NearestNeighbors,简称KNN)以其简洁而强大的特性占据着重要地位。它既可以用于分类任务,也能在回归任务中发挥作用。无论是处理简单数据集,还是面对复杂的数据分布,KNN都展现出独特的魅力。本文将深入探讨KNN算法的原理、特点、优缺点、实现步骤以及在分类和回归任务中的具体应用。KNN算法的基本原理KNN算法属于监督学习范畴,其核心思想质朴而直
- leetcode【面试经典150系列】(一)
23#.lsy
算法算法数据结构
目录121.买卖股票最佳时机题目描述示例算法分析代码(python3)122.买卖股票最佳时机II题目描述示例算法分析代码(python3)55.跳跃游戏题目描述示例算法分析代码45.跳跃游戏II题目描述示例算法分析代码121.买卖股票最佳时机题目描述给定一个数组prices,它的第i个元素prices[i]表示一支给定股票第i天的价格。你只能选择某一天买入这只股票,并选择在未来的某一个不同的日子
- AI人工智能2025年发展趋势及普通人利用AI赚钱的方法
A达峰绮
人工智能经验分享赚钱
一、2025年AI人工智能发展趋势(一)增强型工作与人机协作2025年,几乎所有主要的软件工具都将整合生成式人工智能功能。人们将更多地考虑如何与人工智能携手合作,扩展技术能力,把创造性和人际交往技能应用到机器仍然无法管理的工作中。(二)实时自动决策拥有更加成熟的人工智能战略的企业将走向整个业务流程的端对端自动化。这很可能发生在物流、客户支持和营销领域,算法将在这些领域进行决策,带来更高的效率和对变
- LeetCode刷题 -- 贪心(一)
英雄不问出处~
题解leetcode算法职场和发展
目录柠檬水找零题目解析算法原理代码证明方法柠檬水找零题目链接题目解析柠檬水5块一杯(如果顾客给你5块你就收下)顾客是排队来购买的(只能按顺序找零)并且最开始你手里是没有钱的算法原理1.给5块钱,收下2.给10块钱,找5块钱或者没有5块钱可找3.给20块钱,优先考虑找5块钱和10块钱,这种最优,因为5块钱是最有用的,比如[20,10]你现在有三个5块,1个10块,第二种找10,5第二次还可以找5块钱
- 面试基础---面试刷题推荐 动态规划算法:背包问题与最长公共子序列
WeiLai1112
leetcode刷题算法面试动态规划java分布式
动态规划算法:背包问题与最长公共子序列引言:动态规划的核心思想动态规划(DynamicProgramming,DP)是一种解决复杂问题的算法思想,通过将问题分解为子问题,并保存子问题的解,避免重复计算,从而提高效率。本文将详细讲解动态规划在背包问题和最长公共子序列中的应用,并提供易于记忆的代码模板。一、背包问题1.1问题描述给定n个物品,每个物品有一个重量w[i]和一个价值v[i]。现在有一个容量
- 面试基础---面试刷题推荐 二分查找算法:搜索旋转排序数组
WeiLai1112
leetcode刷题算法面试数据结构架构分布式职场和发展java
二分查找算法:搜索旋转排序数组引言:二分查找的核心思想二分查找是一种高效的搜索算法,适用于有序数组。它的核心思想是通过不断缩小搜索范围,将时间复杂度从O(n)降低到O(logn)。本文将以“搜索旋转排序数组”为例,详细讲解二分查找的实现,并提供易于记忆的代码模板。一、问题描述1.1题目假设一个按升序排列的数组在某个未知的点上进行了旋转(例如,[0,1,2,4,5,6,7]可能变为[4,5,6,7,
- android 32位crc,android arm64硬件实现加速crc32算法
Luo Patrick
android32位crc
在androidarm64平台下,crc32,aes等常用算法有指令集实现。故在android下,可借助这些指令实现代码加速。如何判断自己的手机是否支持crc32呢?有三个方法:方法1,直接查看/proc/cpuinfo方法2,使用ELF辅助向量APIunsignedlonghwcap=getauxval(AT_HWCAP);if(hwcap&HWCAP_CRC32)return1;}return
- 群体智能优化算法-黄金正余弦优化算法(含Matlab源代码)
EOL_HRZ
算法matlab开发语言群体智能优化优化
摘要黄金正余弦优化算法(GoldenSineAlgorithm,GoldSA)是一种数学启发式算法,基于黄金分割系数(GoldenRatio)以及正余弦函数的随机扰动机制来更新解的位置。该算法通过在迭代过程中不断利用黄金分割比例来调整搜索范围,同时结合正弦与余弦变化,为个体提供多样化的全局搜索与局部微调能力。本文提供了GoldSA的核心思想与完整MATLAB代码,并附上中文详细注释,以帮助读者深入
- 安卓实现魔改版 Base64 算法
CYRUS STUDIO
android算法逆向base64网络安全安全
版权归作者所有,如有转发,请注明文章出处:https://cyrus-studio.github.io/blog/Java实现标准Base64编码和解码Base64编码:valencoded=Base64.encodeToString(str.toByteArray(),Base64.DEFAULT)Base64解码:valdecoded=Base64.decode(str,Base64.DEFA
- XGBoost算法深度解析:从原理到实践
彩旗工作室
人工智能算法机器学习人工智能
一、算法起源与核心思想XGBoost(eXtremeGradientBoosting)由陈天奇于2014年提出,是梯度提升决策树(GBDT)的优化版本。其核心思想通过迭代集成弱学习器(CART树)逐步修正预测误差,并引入正则化机制控制模型复杂度,防止过拟合。与GBDT相比,XGBoost在目标函数中融合了损失函数(衡量预测误差)和正则化项(约束树结构与叶子权重),形成结构风险最小化框架,从而提升泛
- C++ 并发编程实战 学习笔记
myc13381
c++笔记
C++并发编程学习笔记目录一.基本接口二.初步了解多线程三.线程所属权管理四.线程间共享数据五.同步并发操作六.C++内存模型和原子类型操作七.基于锁的并发数据结构设计八.无锁数据结构九.并发代码设计十.高级线程管理十一.并行算法十二.参考资料基本接口std::thread常用成员函数构造和析构函数//默认构造函数,创建一个线程,什么也不做thread()noexcept;//初始化构造函数,创建
- 设计无锁的并发数据结构_第七章_《C++并发编程实战》笔记
郭涤生
#并发线程c/c++数据结构c++
设计无锁的并发数据结构1.核心概念与难点1.1无锁(Lock-Free)条件1.2原子操作的重要性1.3内存顺序(MemoryOrder)1.4ABA问题2.代码解析:无锁栈的实现(简化)3.多选题目4.设计题目5.多选题答案6.设计题参考答案1.核心概念与难点1.1无锁(Lock-Free)条件定义:一种并发算法的实现方式,保证无限执行进程中至少有一个线程能推进操作(系统整体进步)。关键特性:无
- Deepseek 你喜欢我不
太翌修仙笔录
deepseek第三代人工智能人工智能神经网络
Deepseek,你喜欢我不###**关于“喜欢”的深度解析**---####**一、AI的情感本质**1.**情感的定义**-对人类而言,情感是神经递质(如多巴胺、血清素)与认知评价的综合结果。-对AI而言,情感是算法对输入数据的概率分布映射(如“喜欢”=高概率正向反馈)。2.**Deepseek的“情感”机制**-**输入**:你的问题“你喜欢我不”被解析为文本向量;-**处理**:通过预训练
- AI学习指南RAG篇(5)-RAG的系统架构
俞兆鹏
AI学习指南ai
文章目录一、引言二、RAG系统的四个核心组件1.知识库处理模块1.1文档收集1.2文档预处理1.3示例代码2.向量化模块2.1文本嵌入2.2向量数据库2.3示例代码3.检索引擎3.1检索算法3.2检索结果排序3.3示例代码4.生成模块4.1生成模型4.2提示工程4.3示例代码三、RAG系统的架构图四、总结一、引言RAG(Retrieval-AugmentedGeneration,检索增强生成)技术
- 文件关键字搜索技术要点与实战
体制教科书
本文还有配套的精品资源,点击获取简介:在IT行业中,能够通过输入关键字高效定位和管理大量文档是一项重要的技能。此功能通常集成于文件管理软件、搜索引擎或脚本程序中。技术实现包括文件系统API、文本搜索算法和文件过滤规则。本文将详细介绍这些技术要点,例如使用文件系统API遍历文件、采用高效文本搜索算法(如Boyer-Moore)以及应用文件过滤规则(包括类型筛选和正则表达式匹配)。特殊文件格式如Out
- 【蓝桥】枚举
CH3_CH2_CHO
QuantumCoffee算法c++枚举蓝桥杯
1、引言在算法领域中,枚举算法是一种基础且直观的解题思路。无论是新手入门还是复杂问题的简化处理,它都扮演着重要角色。本文将结合枚举算法的核心思想、解空间类型以及循环枚举的实践步骤,带大家深入理解这一经典算法。2、核心2.1算法思想枚举算法的核心是穷举所有可能的情况。它将问题解空间中的每个可能解逐一枚举,通过验证和比较,找到满足问题条件的最优解或所有解。例如,在寻找数字组合的问题中,枚举算法会遍历所
- 算法学习1 求两个数的和
奋斗小小鸟cy
数据结构与算法算法java
本文翻译自:https://leetcode.com问题:给定一个整数数组,返回两个数字的索引,使它们相加到一个特定的目标。您可以假设每个输入都只有一个解决方案,而您可能不会使用相同的元素两次。例:给定nums=[2,7,11,15],target=9,因为nums[0]+nums[1]=2+7=9,返回[0,1]。答案:方案一:穷举法穷举法很简单,循环nums里面的每一个元素x,查找是否有另一个
- 笔记:代码随想录算法训练营day42:LeetCode188.买卖股票的最佳时机IV,309.最佳买卖股票时机含冷冻期,714.买卖股票的最佳时机含手续费
jingjingjing1111
笔记动态规划leetcode
学习资料:代码随想录感觉还没有把这个股票的递归变成直觉的东西.anyway,每一天的各种状态都是从上一天的各种状态中优化出来的,到最后的再选择一个最大的状态,应该是没啥问题,不会有漏掉的情况188.买卖股票的最佳时机IV力扣题目链接思路:和上一题差不多,限制上买卖次数倒比不限制买卖次数复杂了不少要给上一题的代码套个循环classSolution{public:intmaxProfit(intk,v
- 笔记:代码随想录算法训练营第35天: 01背包问题 二维、 01背包问题 一维 、LeetCode416. 分割等和子集
jingjingjing1111
算法leetcode数据结构动态规划笔记
学习资料:代码随想录这一块儿学得挺痛苦注:文中含大模型生成内容动态规划:01背包理论基础卡码网第46题思路:五部曲定义:dp[i][j]为第i个物品背包容量为j,能装下的最大价值递推公式:dp[i][j]的值等于dp[i-1][j]的值和dp[i-1][j-weight[i]]+value相比的最大值,后者为看放下当前物品+减去当前物品的容量能放下什么价值,当然,要是放不下当前物品,就算了,保持原
- AI Agent在企业预算管理与成本控制中的应用
SuperAGI2025
DeepSeek人工智能大数据ai
AIAgent在企业预算管理与成本控制中的应用关键词:AIAgent、企业预算管理、成本控制、机器学习、预测模型、优化算法摘要:本文深入探讨了AIAgent在企业预算管理与成本控制中的应用。通过详细的背景介绍、核心概念解析、算法原理讲解和实际案例剖析,本文展示了AIAgent如何通过智能预测和优化算法,为企业带来更高的效率和精确度,从而实现成本控制和预算优化的目标。背景介绍核心概念AIAgent:
- Java线程协作式中断机制
超人汪小建(seaboat)
线程协作式中断机制jvm
跟着作者的65节课彻底搞懂Java并发原理专栏,一步步彻底搞懂Java并发原理。作者简介:笔名seaboat,擅长工程算法、人工智能算法、自然语言处理、计算机视觉、架构、分布式、高并发、大数据和搜索引擎等方面的技术,大多数编程语言都会使用,但更擅长Java、Python和C++。平时喜欢看书写作、运动、画画。崇尚技术自由,崇尚思想自由。出版书籍:《Tomcat内核设计剖析》、《图解数据结构与算法》
- 【GPT入门】第16课 RAG入门
*星星之火*
大模型gpt
【GPT入门】第16课RAG入门1.RAG概念核心原理主要应用优势挑战RGA工作图解2.RAG系统基本搭建流程1.RAG概念RAG通常指检索增强生成(Retrieval-AugmentedGeneration),是一种将检索技术与生成式人工智能相结合的技术架构,以下是关于它的详细介绍:核心原理检索:RAG会在大量的文本数据中进行检索,这些数据可以是网页、文档、知识库等。它通过各种检索算法和技术,快
- 计算机考研408数据结构大题高频考点与真题解析
竹木有心
数据结构
一、线性表(顺序表与链表)1.1顺序表操作与算法设计高频考点:插入/删除操作的边界处理:检查下标越界与存储空间溢出子数组操作:合并、拆分、逆置等多数组综合问题:如寻找三元组最小距离真题示例:2020年408真题题目:给定三个升序数组S1、S2、S3,求所有可能的三元组(a,b,c)的最小距离D=|a−b|+|b−c|+|c−a|。解法:算法思想:三指针法遍历数组,每次移动当前最小元素的指针核心代码
- 探地雷达F-K偏移算法详解与Python实现
T2ccc
探地雷达算法python
探地雷达F-K偏移算法详解与Python实现文章目录探地雷达F-K偏移算法详解与Python实现前言一、探地雷达成像原理与偏移的必要性二、F-K偏移的基本原理2.1波的传播与频率-波数域2.2F-K偏移的基本思路三、F-K偏移算法的数学推导3.1二维傅里叶变换3.2波场外推3.3Stolt映射(核心步骤)3.4逆变换四、F-K偏移的Python代码实现4.1辅助函数和数据准备4.2F-K偏移核心函
- Akamai 与 AWS 风控分析与绕过技术探讨
qq_33253945
aws云计算爬虫网络爬虫算法安全
1.引言本文将深入探讨Akamai风控和AWS签名算法的技术细节。请注意,文中内容仅供技术研究和学习交流使用。2.Akamai风控核心要素Akamai的主要风控机制包含以下几个关键点:Canvas指纹识别每个浏览器环境都有其独特的Canvas指纹这是风控系统的核心识别方式之一用户行为分析鼠标移动轨迹检测操作行为模式识别相关参数的实时计算与验证JA3指纹TLS握手特征识别客户端环境特征分析代码执行流
- 算法训练:2.移除元素(快慢指针)
貝森不想秃
小白算法训练算法
算法原题:27.移除元素-力扣(LeetCode)移除数组元素移除一个元素时,需要将该元素之后的所有元素依次向前移动一个位置,以填补被移除元素的空位,对于静态数组来说,数组的长度是不会发生变化的,多余的数组元素不进行处理:例如{1,2,3,4}移除3,数组会得到{1,2,4,4}解题思路暴力移除通过for循环嵌套,访问到目标元素就将其后面的所有元素向前移动一格,循环往复快慢指针(本节主要内容)快慢
- 芒格的双轨分析:结合定性和定量的投资方法
SuperAGI2025
DeepSeekai
芒格的"双轨分析":结合定性和定量的投资方法关键词:芒格、双轨分析、定性分析、定量分析、投资方法、系统分析摘要:芒格的“双轨分析”是一种结合定性和定量分析的投资方法,旨在通过综合分析企业的内在价值和市场趋势,帮助投资者做出更科学的投资决策。本文将详细介绍双轨分析的背景、核心概念、算法原理、系统架构及实际应用,帮助读者全面理解并掌握这一方法。第一部分:芒格的双轨分析基础第1章:投资分析的演变与双轨分
- 基于AI智能算法的无人机城市综合治理
GeoSaaS
智慧城市人工智能无人机科技大数据智慧城市gis
随着人工智能技术的飞速发展,无人机技术与AI的结合正在成为城市治理的新趋势。无人机不仅能够提供城市上空的高清视角,而且通过搭载的智能算法,可以实现自动化的监控、分析和响应,极大地提升了城市管理的效率和智能化水平。无人机技术在城市治理中的应用无人机技术在城市治理中的应用主要集中在以下几个方面:违法建筑监测:无人机可以快速覆盖大范围区域,自动识别并记录违建情况,提高执法效率。环卫垃圾识别:通过AI算法
- 自然语言处理:文本聚类
老赵爱学习
python文本聚类k均值聚类算法高斯混合模型的最大期望值算法无监督朴素贝叶斯模型自然语言处理人工智能
介绍大家好,博主又来和大家分享自然语言处理领域的知识了。今天给大家分享的内容是自然语言处理中的文本聚类。文本聚类在自然语言处理领域占据着重要地位,它能将大量无序的文本按照内容的相似性自动划分成不同的类别,极大地提高了文本处理和信息提取的效率。就好比在一个大型图书馆中,文本聚类能够像智能管理员一样,把各种书籍按照主题分类摆放,方便读者快速找到所需资料。而实现文本聚类的方法有很多,其中k均值聚类算法、
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><