刚刚看完斯坦福大学机器学习第四讲(牛顿法),也对学习过程做一次总结吧。
一、误差准则函数与随机梯度下降:
数学一点将就是,对于给定的一个点集(X,Y),找到一条曲线或者曲面,对其进行拟合之。同时称X中的变量为特征(Feature),Y值为预测值。
如图:
一个典型的机器学习的过程,首先给出一组输入数据X,我们的算法会通过一系列的过程得到一个估计的函数,这个函数有能力对没有见过的新数据给出一个新的估计Y,也被称为构建一个模型。
我们用X1、X2...Xn 去描述feature里面的分量,用Y来描述我们的估计,得到一下模型:
我们需要一种机制去评价这个模型对数据的描述到底够不够准确,而采集的数据x、y通常来说是存在误差的(多数情况下误差服从高斯分布),于是,自然的,引入误差函数:
关键的一点是如何调整theta值,使误差函数J最小化。J函数构成一个曲面或者曲线,我们的目的是找到该曲面的最低点:
假设随机站在该曲面的一点,要以最快的速度到达最低点,我们当然会沿着坡度最大的方向往下走(梯度的反方向)
用数学描述就是一个求偏导数的过程:
这样,参数theta的更新过程描述为以下:
(α表示算法的学习速率)
二、算法实现与测试:
通过一组数据拟合 y = theta1*x1 +theta2*x2
[python] view plain copy print ?
-
-
- matrix_A = [[1,4], [2,5], [5,1], [4,2]]
- Matrix_y = [19,26,19,20]
- theta = [2,5]
-
- leraing_rate = 0.005
- loss = 50
- iters = 1
- Eps = 0.0001
- while loss>Eps and iters <1000 :
- loss = 0
- for i in range(3) :
- h = theta[0]*matrix_A[i][0] + theta[1]*matrix_A[i][1]
- theta[0] = theta[0] + leraing_rate*(Matrix_y[i]-h)*matrix_A[i][0]
- theta[1] = theta[1] + leraing_rate*(Matrix_y[i]-h)*matrix_A[i][1]
- for i in range(3) :
- Error = 0
- Error = theta[0]*matrix_A[i][0] + theta[1]*matrix_A[i][1] - Matrix_y[i]
- Error = Error*Error
- loss = loss +Error
- iters = iters +1
- print ('theta=',theta)
- print ('iters=',iters)
#Python 3.3.5
# matrix_A 训练集
matrix_A = [[1,4], [2,5], [5,1], [4,2]]
Matrix_y = [19,26,19,20]
theta = [2,5]
#学习速率
leraing_rate = 0.005
loss = 50
iters = 1
Eps = 0.0001
while loss>Eps and iters <1000 :
loss = 0
for i in range(3) :
h = theta[0]*matrix_A[i][0] + theta[1]*matrix_A[i][1]
theta[0] = theta[0] + leraing_rate*(Matrix_y[i]-h)*matrix_A[i][0]
theta[1] = theta[1] + leraing_rate*(Matrix_y[i]-h)*matrix_A[i][1]
for i in range(3) :
Error = 0
Error = theta[0]*matrix_A[i][0] + theta[1]*matrix_A[i][1] - Matrix_y[i]
Error = Error*Error
loss = loss +Error
iters = iters +1
print ('theta=',theta)
print ('iters=',iters)
求解结果:
[python] view plain copy print ?
- >>>
- theta= [2.9980959216157945, 4.001522800837675]
- iters= 75
>>>
theta= [2.9980959216157945, 4.001522800837675]
iters= 75
但如果对输入数据添加一些噪声
[python] view plain copy print ?
- matrix_A = [[1.05,4], [2.1,5], [5,1], [4,2]]
matrix_A = [[1.05,4], [2.1,5], [5,1], [4,2]]
求解结果为:
[python] view plain copy print ?
- >>>
- theta= [3.0095950685197725, 3.944718521027671]
- iters= 1000
>>>
theta= [3.0095950685197725, 3.944718521027671]
iters= 1000
可见在有噪声的情况下,要及时调整模型误差精度、迭代次数上限,一期达到我们的需求。
以上图片和公式均摘自: 梯度下降法
http://blog.csdn.net/zbc1090549839/article/details/38149561