点击打开链接
Time Limit: 3000MS | Memory Limit: 131072K | |
Total Submissions: 19189 | Accepted: 8099 |
Description
Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.
Input
The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.
Output
Output the elements of S modulo m in the same way as A is given.
Sample Input
2 2 4 0 1 1 1
Sample Output
1 2 2 3题目大意:
给定一个 n*n 的矩阵和一个整数 k,,要求的是S = A + A2 + A3 + … + Ak.
出的是 S%Mod
解题思路:
首先这是一个矩阵的快速幂,将Ak 用矩阵的快速幂求解出来(可以套模板),
可以推出以下结论
Sk = A + A2 + A3 + … + Ak
=(1+Ak/2)*(A + A2 + A3 + … + Ak/2 )+(Ak )
=(1+Ak/2)*(Sk/2 )+(Ak )
然后可以递归啦,首先计算的是 (1+ Ak/2 ),这里的 1 不仅是 1 它是一个单位矩阵,然后递归一下,最后判断一下奇偶性
要是偶数的时候就不用+(Ak ),要是奇数的话就+(Ak ),具体详见代码:
#include <iostream> #include <cstring> using namespace std; typedef struct Mar { int m[40][40]; void Init()///初始化为单位矩阵 { memset(m, 0, sizeof(m)); for(int i=0; i<40; i++) m[i][i] = 1; } } Martrix; int n, Mod; Martrix Add(Martrix a, Martrix b)///矩阵加法 { Martrix c; for(int i=0; i<n; i++) for(int j=0; j<n; j++) c.m[i][j] = (a.m[i][j] + b.m[i][j]) % Mod;///一定要模 Mod return c; } Martrix Multi(Martrix a, Martrix b)///矩阵乘法 { Martrix c; for(int i=0; i<n; i++) { for(int j=0; j<n; j++) { c.m[i][j] = 0; for(int k=0; k<n; k++) c.m[i][j] += (a.m[i][k]*b.m[k][j])%Mod;///一定要模 Mod,将数值减小 c.m[i][j] %= Mod; } } return c; } Martrix quick_mod(Martrix a, int b)///矩阵的快速幂 { Martrix ans; ans.Init(); while(b) { if(b & 1) ans = Multi(ans, a); b>>=1;///二分 a = Multi(a, a); } return ans; } Martrix Get_sum(Martrix a, int k)///递归 { if(k == 1) return a; Martrix ans; ans.Init(); ans = Add(ans, quick_mod(a, k>>1));///1+A^(k/2) ans = Multi(ans,Get_sum(a,k>>1));///剩下的 if(k & 1)///判断奇偶性 ans = Add(ans,quick_mod(a,k)); return ans; } int main() { int k; while(cin>>n>>k>>Mod) { Martrix a; for(int i=0; i<n; i++) for(int j=0; j<n; j++) cin>>a.m[i][j]; Martrix ans = Get_sum(a,k); for(int i=0; i<n; i++) { for(int j=0; j<n-1; j++) cout<<ans.m[i][j]<<" "; cout<<ans.m[i][n-1]<<endl; } } return 0; }