- 2024国赛数学建模-模拟火算法(MATLAB 实现)
V建模忠哥V
2024国赛数学建模算法matlab
模拟退火算法1.1算法原理模拟退火算法的基本思想是从一给定解开始,从邻域中随机产生另一个解,接受Metropolis准则允许目标函数在有限范围内变坏,它由一控制参数t决定,其作用类似于物理过程中的温度T,对于控制参数的每一取值,算法持续进行“产生—判断—接受或舍去”的迭代过程,对应着固体在某一恒定温度下的趋于热平衡的过程,当控制参数逐渐减小并趋于0时,系统越来越趋于平衡态,最后系统状态对应于优化问
- 数学建模强化宝典(7)模拟退火算法
IT 青年
建模强化栈数学建模模拟退火算法编程
前言模拟退火算法(SimulatedAnnealing,SA)是一种基于概率的全局优化算法,它模拟了固体退火过程中的物理现象,通过随机搜索和概率接受机制来寻找问题的全局最优解。以下是对模拟退火算法的详细解析:一、算法起源与背景起源:模拟退火算法的思想最早由N.Metropolis等人在1953年提出,用于研究粒子在金属中的退火过程。1983年,S.Kirkpatrick等人成功地将这一思想引入到组
- matlab模拟退火算法
孺子牛 for world
matlab模拟退火算法开发语言
在MATLAB中实现退火算法(也称为模拟退火算法,SimulatedAnnealing,SA)通常涉及几个关键步骤:初始化系统状态、定义能量函数(或成本函数)、模拟退火过程(包括温度下降和状态转移)、以及判断是否达到停止条件。function[best_state,best_energy]=simulatedAnnealing(initial_state,energyFunction,parame
- matlab实现模拟退火算法
孺子牛 for world
matlab模拟退火算法算法
模拟退火算法(SimulatedAnnealing,SA)是一种通用概率优化算法,用于在给定的大搜索空间内寻找问题的近似全局最优解。该算法灵感来源于物理学中固体物质的退火过程,其中温度逐渐降低,粒子逐渐趋于能量最低状态。在MATLAB中实现模拟退火算法,我们首先需要定义目标函数(即我们需要最小化的能量或成本函数),然后设定算法的参数,如初始温度、降温速率、内循环次数(每个温度下的迭代次数)等。以下
- 退火模拟算法c语言程序,模拟退火算法实例(c++ 与 c# 实现)
weixin_39799825
退火模拟算法c语言程序
此片文章主要参考CSDN博主里头的一篇文章,将自己的理解写下来,以方便后期的查阅。一、C++实现1.已知平面上若干点坐标(xi,yi),求平面上一点p(x,y),到这些点的总距离最小。思路:取所有点的均值为目标点。计算全部点与目标点求差值的和,将目标点以一定系数朝着总和的方向移动,得到新的目标点。//求最小距离//限制条件:10.02)//0.02为温度的下限,若温度为temp达到下限,则停止搜索
- 1723. 完成所有工作的最短时间
luckycoding
深度优先算法
文章目录题意思路代码题意题目链接K个工人,一共jobs个任务,问怎样分配任务,最短的最长工人完成任务完成时间。思路DFS+剪枝(最大单个工人jobs时间超过ans时间;有限空闲工人拿任务)模拟退火dp代码//dfsclassSolution{public:voidsolve(vector&sum,int&ans,vector&jobs,intindex,intused,constint&k,int
- 模拟退火算法
aaa8db431342
学号:17020150083姓名:许学同原文链接:https://blog.csdn.net/weixin_40562999/article/details/80853354【嵌牛导读】著名的模拟退火算法,它是一种基于蒙特卡洛思想设计的近似求解最优化问题的方法。【嵌牛鼻子】模拟退火算法【嵌牛正文】一点历史——如果你不感兴趣,可以跳过美国物理学家N.Metropolis和同仁在1953年发表研究复杂
- 西瓜书-机器学习5.4 全局最小与局部极小
lestat_black
西瓜书机器学习
两种“最优”:“局部极小”(localminimum)和"全局最小"(globalminimum)对和,若存在使得多组不同参数值初始化多个神经网络使用“模拟退火”:以一定的概率接受比当前解更差的结果,有助于“跳出”局部极小使用随机梯度下降遗传算法(geneticalgorithms)[Goldberg,1989]也常用来训练神经网络以上用于跳出局部极小的技术大多是启发式,理论上商缺乏保障。Gold
- 模拟退火算法(Simulated Annealing, SA)
想做后端的前端
人工智能模拟退火算法算法机器学习
一、简介模拟退火算法来源于固体退火原理,是一种基于概率的算法。将固体加温至充分高的温度,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,分子和原子越不稳定。而徐徐冷却时粒子渐趋有序,能量减少,原子越稳定。在冷却(降温)过程中,固体在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。模拟退火算法从某一较高初温出发,伴随温度参数的不断下降,结合概率突跳特性在解空间中随机寻找目标
- NX/UG二次开发—其他—矩形套料(排料)简介
恩·艾克斯·红
NX二次开发矩形套料
算法逻辑排料方法+一定时间内获取近似解的算法看了一些论文和博客,一般排料方法采用最低水平线算法排料,再此基础上增加空余区域填充。然后配合遗传学算法||模拟退火算法||蚁群算法||免疫算法等,在一定时间内求得一组最优解。在最简单的水平线算法排料,采用最简单的变异和交叉,结果如下,伴随调整变异和交叉,明显可以提升速度和材料利用率。接下来准备添加空余区域填充,看一下效果。
- 【优化求解】基于模拟退火算法求解通信网频率规划问题matlab代码
matlab科研助手
1简介本文提出一种基于模拟退火算法的无线通信频率规划方法,将目标要布网的覆盖区域划分为若干个小区,划分后的每个小区设置一个对应的发射基站,而每个基站装载一个广播主信道(BCCH信道),根据无线网络设计规划的要求,可以局部或者整体的选择频率复用模式;利用退火算法算法中各种不同设定约束条件来组合设定目标函数f支配方案,并用干扰综合总值E可用于评估频率指配方案的优劣,最终得出最优的频率支配方案,将其指向
- [GN] DP学习笔记板子
GGood_Name
学习笔记算法
文章目录Bitset滚动数组多重背包区间DP树形dp状压dp模拟退火Bitset使用bitset需要引用头文件。其声明方法为:std::bitsets;(N为s长度)常用函数:b.any()判断b中是否存在值为1的二进制位b.none()判断b中是否不存在值为1的二进制位b.count()判断b中值为1的二进制位个数b.size()判断b中二进制位的个数b[pos]访问b中在pos处的二进制位b.
- 1.23聚类算法(kmeans(初始随机选k,迭代收敛),DBSCAN(dij选点),MEANSHIFT(质心收敛),AGENS(最小生成树)),蚁群算法(参数理解、过程理解、伪代码、代码)
CQU_JIAKE
机器学习&神经网络数学方法数模人工智能算法机器学习启发式算法聚类数学建模
聚类算法聚类结果不变K-meansK值是事先确定好的,是要划分的聚类的数量;初始时随机选择k个点,然后逐渐选择离他最近的点,不断锁定最近的,最后计算方差和;这个是轮流的这个就类似于模拟退火的思想当前聚类下的方差和,也称为簇内方差(within-clustervariance),是一种度量聚类质量的指标。它衡量了簇内数据点与各自簇中心的差异程度。方差和越小,表示簇内的数据点越紧密聚集在一起。计算当前
- 模拟退火算法(SA)优化BP神经网络
树洞优码
模拟退火算法神经网络算法
模拟退火算法(SA)优化BP神经网络模拟退火算法(SA)可以用于优化神经网络中的参数,包括神经网络的权重和偏置。在优化BP神经网络中,SA可以帮助找到更好的权重和偏置的组合,以提高神经网络的性能。在BP神经网络中,SA主要用于调整网络的权重和偏置。通过SA算法,可以在权衡探索和利用的过程中,更有效地搜索到神经网络的参数组合,以降低误差、提高分类准确率或者加速网络收敛。优化BP神经网络实验结果如下:
- 最小圆覆盖算法总结
CCloth
计算几何算法学习算法
一、定义什么是最小圆覆盖?其实和最小矩形覆盖定义是类似的,给出一个点集,求能覆盖住所有点的最小圆。二、两种算法求最小圆覆盖有两种算法,分别是增量法和模拟退火,个人推荐增量法,它的精度更高一些,且时间复杂度是稳定的线性级(点的顺序打乱后),所以下面也主要介绍增量法的原理。增量法前置知识1.圆上三点确定唯一的一个圆。这个道理很简单,考虑三角形外接圆就行。2.若已有某个点集的最小圆覆盖,向该点集中再加入
- 2019-03-28派森学习第129天
每日派森
帮师妹装了一晚上tensorflow,按照自己的前天安装的流程总还会报错,在加上她的电脑特别慢,真无语了!今晚学习一会儿模拟退火算法吧,白天都搜索了,一直没有来的及学习。5种启发式算法:1首先要明白全局最小和全局极小值:2模拟退火算法的基本思想:在每一步都有一定概率接受比当前更差的结果,从而有助于跳出局部极小值,找到全局最小值。算法框图
- 【数学建模】智能算法
自律版光追
数学建模数学建模pythonscikit-learnmatplotlib遗传算法模拟退火算法人工神经网络
文章目录模拟退火算法简介算法流程及应用算法流程算法应用遗传算法遗传算法的原理遗传算法应用模型及算法模型求解人工神经网络概述人工神经元激活函数基本模型感知器BP神经网络RBF神经网络应用智能算法,也称现代优化算法模拟退火算法简介材料统计力学观点:材料中粒子的不同结构对应于粒子的不同能量水平在高温条件下,粒子的能量较高,可以自由运动和重新排列。在低温条件下,粒子能量较低。如果从高温开始,非常缓慢地降温
- Matlab|基于改进遗传算法的储能选址定容(可任意设定储能数量)
科研工作站
选址定容matlab储能选址定容优化配置分布式光伏风电
目录主要内容部分代码结果一览(以3个储能为例)下载链接主要内容该模型采用改进遗传算法优化配电网系统中储能选址位置和容量,程序以IEEE33节点系统为分析对象,以网损最小为目标,采用matpower实现系统潮流计算,主要有三个优势:①储能数量可以任意设定,通过【命令行窗口】直接输入储能数量即可;②采用模拟退火改进遗传算法,算法创新性强;③模型增加了分布式光伏和风电,有效拓宽学习思路。程序采用matl
- 模拟退火算法的内循环和外循环
qq_45091396
模拟退火算法算法
模拟退火算法(SimulatedAnnealing)通常具有两个循环,一个外循环和一个内循环。这两个循环的目的是在解空间中搜索全局最优解(或近似最优解)。外循环:外循环主要用来控制模拟退火算法的全局搜索策略。外循环控制温度的下降,温度的下降会影响内循环的行为。外循环通过逐渐减小温度来逐渐减小接受劣解的概率,从而使算法在搜索的早期更加倾向于接受劣解,有助于跳出局部最优解,然后随着温度的下降,减小接受
- Matlab智能优化算法学习笔记(一)——粒子群算法、模拟退火算法、遗传算法、蚁群算法
Mist_Orz
MATLABmatlab粒子群算法
文章目录粒子群算法△matlab工具箱粒子群函数○代码○○手搓代码实现粒子群优化2个变量(xy)的粒子群优化尝试·定义函数·绘制网格图(用来可视化过程)·参数初始化,绘制粒子初始位置·开始迭代过程并绘图·获取结果并绘图·运行结果遗传算法△遗传算法概念最近在做一些机器人位姿优化方面的东西,学习了一下关于智能优化算法方面的内容,于是在这里整理一下。最近时间比较紧张,就不写太详细了❤2023.12.12
- 最优化 | 无约束优化方法 | C++实现
CHH3213
数学c++数学数值分析最优化
文章目录参考资料1.前言2.梯度下降法2.1原理2.2c++实现2.3共轭梯度法3.牛顿法3.1原理3.2c++实现4.模拟退火算法4.1原理4.2c++实现5.遗传算法参考资料https://blog.csdn.net/tangshishe/article/details/116670314无约束优化方法模拟退火算法基于matlab模拟退火算法求解函数极值问题1.前言无约束问题是指只有优化目标,
- SAICP(模拟退火迭代最近点)的实现
Smile Hun
点云学习c++PCL模拟退火算法ICP
SAICP(模拟退火迭代最近点)的实现注:本系列所有文章在github开源,也是我个人的学习笔记,欢迎大家去star以及fork,感谢!仓库地址:pointcloud-processing-visualization总结一下上周的学习情况ICP会存在局部最小值的问题,这个问题可能即使是没有实际遇到过,也或多或少会在各种点云匹配算法相关博客中看到,于是我去查了一些资料,发现可以通过模拟退火算法解决,
- MATLAB|模拟退火改进多目标粒子群算法在分布式电源选址和定容中的应用
科研工作站
选址定容matlab算法人工智能
目录主要内容模型研究1.模拟退火粒子群算法2.分布式电源接入配电网影响结果一览下载链接主要内容该模型考虑投资成本、网损以及电压稳定性三因素建立了一个三目标的数学模型,采用改进多目标粒子群算法进行求解计算,主要的改进包括:采用混合模拟退火算法和小生境技术进行多目标全局寻优。程序以IEEE69节点系统验证了所提算法在分布式电源选址定容方面的有效性,模型中的约束条件是通过罚函数的形式得以实现,程序不仅得
- Matlab数学建模算法之模拟退火算法(SA)详解
左手の明天
Matlab数学建模算法matlab模拟退火算法
运行环境:Matlab撰写作者:左手の明天精选专栏:《python》推荐专栏:《算法研究》####防伪水印——左手の明天####大家好,我是左手の明天!好久不见今天分享matlab数学建模算法——模拟退火算法最近更新:2023年12月24日,左手の明天的第310篇原创博客更新于专栏:matlab####防伪水印——左手の明天####目录一、模拟退火算法1基本思想2基本步骤二、算法流程三、解决局部最
- 经典算法-模拟退火算法求解旅行商问题TSP
Alex_StarSky
机器学习GPT实战系列模拟退火算法机器学习旅行商问题TSP问题SA算法经典算法
经典算法-模拟退火算法求解旅行商问题TSP旅行商问题(TravelingSalesmanProblem,TSP)是组合优化中的经典问题。简单地说,一个旅行商需要访问N个城市,并返回到出发城市,问题是找到最短的可能路线,使得每个城市只被访问一次。由于TSP是一个NP-hard问题,找到其精确解决方案是非常计算密集型的,特别是对于大规模的城市集。因此,我们需要一种可以在合理的时间内得到近似解的方法。L
- 经典算法-模拟退火算法的python实现
Alex_StarSky
GPT实战系列金融风控模拟退火算法python启发式算法SA算法组合优化算法算法
经典算法-模拟退火算法的python实现模拟退火算法基本思想模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却。加温时,固体内部粒子随温度升高变为无序状,内能增大,而缓慢冷却时粒子又逐渐趋有序。从理论上讲,如果冷却过程足够缓慢,那么冷却中任一温度时固体都能达到热平衡,而冷却到低温时将达到这一低温下的内能最小状态。LLM大模型相关文章:大模型查询工具助手之股票免费查询接口GPT实战系
- 【数模百科】一篇文章讲清楚模拟退火算法
小树modelwiki
模拟退火算法算法机器学习
本篇文章节选自模拟退火算法-数模百科,如果你想了解更多有关智能优化算法的信息,请移步智能优化算法-数模百科白话文模拟退火算法,其实是受到了物理里面退火过程的启发。退火,说的是金属或者玻璃加热后再慢慢冷却,这样做能让材料更稳定,结构更完美。那这个算法就借鉴了这一点,目的是为了解决一些特别复杂的优化问题,比如说要在一大堆可能的方案中找到最好的那一个。有时候我们要解决的问题就像是在一个多山的地图上找一个
- 【机器人栅格地图】基于模拟退火算法结合遗传求解栅格地图机器人路径规划含Matlab源码
matlab科研助手
1简介针对移动机器人路径规划的难题,运用了一种基于遗传模拟退火算法的移动机器人最优路径规划方法,对移动机器人的路径规划进行了设计,采用了栅格法对环境进行建模.为了提高路径规划的效率,采用了一种改进的避障算法来生成初始种群.将遗传算法与模拟退火算法相结合形成遗传模拟退火算法,新算法具有较强的全局和局部搜索能力.仿真实验结果证明算法相对于基本遗传算法的收敛速度,搜索质量和最优解输出概率方面有了明显的提
- Matlab:遗传算法,模拟退火算法练习题
不吃橘子的橘猫
数学建模matlab数据结构开发语言算法学习
1、遗传算法(1)遗传算法是一种基于自然选择原理和自然遗传机制的搜索(寻优)算法,它是模拟自然界中的生命进化机制,在人工系统中实现特定目标的优化。遗传算法的实质是通过群体搜索技术,根据适者生存的原则逐代进化,最终得到最优解或准最优解。它必须做以下操作:初始群体的产生、求每一个体的适应度、根据适者生存的原则选择优良个体、被选出的优良个体两两配对,通过随机交叉其染色体的基因并随机变异某些染色体的基因后
- 2019-05-30(让搜索过程具有一定的爬山能力)
雨住多一横
前言为了解决模型局部最小问题,只能通过改进搜索算法解决,一种方法是让搜索过程具有爬山的能力,同时不会爬出全局最小的山谷。本文介绍的模拟退火(SimulatedAnnealing)和波尔兹曼机(BoltzmannnMachine)就是在模型陷入局部最优时,将模型最优搜索过程赋予爬山的能力。模拟退火算法当系统从一个状态转移到另一个状态时,它的能量(模型优化过程中为损失)由转化为,metropolis规
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理