- 【机器学习】朴素贝叶斯
可口的冰可乐
机器学习机器学习概率论
3.朴素贝叶斯素贝叶斯算法(NaiveBayes)是一种基于贝叶斯定理的简单而有效的分类算法。其“朴素”之处在于假设各特征之间相互独立,即在给定类别的条件下,各个特征是独立的。尽管这一假设在实际中不一定成立,合理的平滑技术和数据预处理仍能使其在许多任务中表现良好。优点:速度快:由于朴素贝叶斯仅需计算简单的概率,训练和预测的速度非常快。适用于高维数据:即使在特征数量多的情况下,朴素贝叶斯仍然表现良好
- 11.4 看不懂就慢慢看啊
反复练习的阿离很笨吧
记得组合数学正交拉丁方从0开始!突然觉得老师说得很有道理,演化计算里活得最好的,不是最优秀的但也不是最差的,是最能适应环境的,别人怎么做,他就怎么做。动态规划,运筹学贝叶斯是生成学习算法,生成一个概率模型判别学习算法高斯判别分析/**NB.java*Copyright2005LiangxiaoJiang*/packageweka.classifiers.gla;importweka.core.*;
- 2019-04-19
AliceGYY
线性函数Y=0.8567+0.516XX称为自变量,也就是自己会变化的量。Y称作因变量,也就是因为X变化而引起变化的量。线性回归,能够用来探索多个变量与另一个变量之间的线性关系。weka、SPSS软件实现编程。
- 机器学习:朴素贝叶斯笔记
Ningbo_JiaYT
机器学习机器学习笔记分类算法
朴素贝叶斯(NaiveBayes)是一种基于贝叶斯定理的简单概率分类算法,广泛应用于机器学习和数据挖掘中。“朴素”体现在对特征之间的独立性做出了假设,即一个特征或者一个属性的出现不依赖于其他特征的出现。目录基本原理1.贝叶斯定理2.朴素的独立性假设贝叶斯定理1.简介2.贝叶斯公式算法过程1.训练模型2.预测类别类型注意事项基本原理1.贝叶斯定理朴素贝叶斯算法的核心是贝叶斯定理,即对于给定的样本数据
- 1.2 Verilog 简介及发展历史
二当家的素材网
Verilog教程fpga开发
Verilog具有很强的电路描述与建模能力,能从多个层次对数字系统进行描述和建模。因此,在简化硬件设计任务、提高设计效率与可靠性、语言易读性、层次化和结构化设计等方面展现了强大的生命力与潜力。发展历史1983年,Verilog最初由GatewayDesignAutomation公司(GDA)的PhilMoorby创建,作为内部仿真器的语言,主要用于逻辑建模和仿真验证,被广泛使用。1989年,GDA
- 朴素贝叶斯原理
小森( ﹡ˆoˆ﹡ )
机器学习算法算法人工智能机器学习
朴素贝叶斯的介绍朴素贝叶斯算法(NaiveBayes,NB)是应用最为广泛的分类算法之一。它是基于贝叶斯定义和特征条件独立假设的分类器方法。由于朴素贝叶斯法基于贝叶斯公式计算得到,有着坚实的数学基础,以及稳定的分类效率。NB模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。条件概率:表示事件A在另外一个事件B已经发生条件下的发生概率,P(A|B)在女神喜欢的条件下,职业是程序员的概率?女
- 猿人学2022安卓逆向对抗比赛第一题分析
贫穷斯蒂芬
#Android逆向分析笔记java逆向androidpython
整体的笔记为自己分析的流程,大佬勿喷第一步准备工具charles抓包工具pixelxl真机jadx本机安装python和frida第二步安装app查壳和抓包通过GDA可以了解到app没有任何的壳防止app有可能不走代理,所以通过charles+postern进行sock转发通过注册后进入第一题**计算1~100页所有数字之和**Charles中可以看到post请求有三个参数,请求的结果为每页需要计
- Weka在数据挖掘中的运用 02 Getting Started with Weka
jenye_
Weka的发音不是Weaker安装Weka研究“Explorer”接口研究一些数据集创建一个分类器解释输出使用filters(过滤器)可视化数据集安装Wekajava环境安装包选择适合你电脑系统的版本。Explorer界面对于这门课程指用到Exploer界面。Experimenter界面针对基于不同数据集的不同机器学习方法的大规模性能比较。KnowlegeFlow界面是Weka的图形界面和命令行界
- ML12-朴素贝叶斯分类
杨强AT南京
朴素贝叶斯分类是一种经典的机器学习算法,本主题从贝叶斯的应用场景,到其数学基础,并到最终的实现与应用做了介绍。主要内容包含: 1.NaiveBayes的分类思想; 2.NaiveBayes分类的数学基础; 3.NaiveBayes分类算法实现; 4.NaiveBayes算法的sklearn调用; 5.文本特征处理; 6.NaiveBayes算法的简历薪资预测实现;朴素贝叶斯算法说明朴素
- 机器学习原理到Python代码实现之NaiveBayes【朴素贝叶斯】
神仙盼盼
基于python的算法设计机器学习机器学习python人工智能
NaiveBayes朴素贝叶斯算法该文章作为机器学习的第二篇文章,主要介绍的是朴素贝叶斯算法的原理和应用。学习本章内容建议对概率论中的联合概率以及先验概率、后验概率有初步的学习和掌握。难度系数:⭐⭐⭐更多相关工作请参考:Github算法介绍朴素贝叶斯算法是一种基于概率论的分类算法,它假设特征之间是独立的,即特征之间没有关联关系。朴素贝叶斯算法通过计算每个类别的概率来对新的样本进行分类。算法原理解析
- 《数据挖掘基础》实验:Weka平台实现聚类算法
lazyn
数据挖掘原理聚类数据挖掘算法机器学习Weka
实验目的进一步理解聚类算法(K-平均、PAM、层次聚类、密度聚类),利用weka实现数据集的聚类处理,学会调整模型参数,以图或树的形式给出挖掘结果,并解释规则的含义。实验要求(1)随机选取数据集(UCI或data文件夹),需要做预处理的,单独说明处理过程。完成以下内容:(用四种方法:K-means、K-中心法、层次、密度)文件导入与编辑参数设置说明结果截图结果分析与对比(2)以AQI.xls中1-
- Weka 分类树输出结果解析 Weighted.avg
deer(écho)
MachineLearning分类数据挖掘人工智能
本文是对weka分类树的结果解释,集合了其它的博文我们使用的是weka自带的weather数据库先看左侧,classifier是分类方法,J48是递归分治策略;cross-validation表示交叉验证,使用了10-Foldspercentagesplit表示分割比例,用以分割训练集和测试集(猜的)再看看output,yes(9/3)(5/2)表示训练集里3个no,测试集里2个no(猜的x2)其
- 朴素贝叶斯法_naive_Bayes
沉住气CD
机器学习常用算法机器学习算法人工智能数据挖掘
朴素贝叶斯法(naiveBayes)是基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入输出的联合概率分布;然后基于此模型,对给定的输入xxx,利用贝叶斯定理求出后验概率最大的输出yyy。基本方法:设输入空间X⊆RnX\subseteqR^nX⊆Rn为nnn维向量的集合,输出空间为类标记集合Y={c1,c2,...,ck}Y=\{c_1,c_2,..
- sk-learn实例-用朴素贝叶斯算法(Naive Bayes)对文本进行分类
张大千09
机器学习sklearn朴素贝叶斯机器学习
简介朴素贝叶斯(NaiveBayes)是一个非常简单,但是实用性很强的分类模型,与基于线性假设的模型(线性分类器和支持向量机分类器)不同,朴素贝叶斯分类器的构造基础是贝叶斯理论。抽象一些的说,朴素贝叶斯分类器会单独考量每一维度特征被分类的条件概率,进而综合这些概率并对其所在的特征向量做出分类预测。因此,这个模型的基本数学假设是:各个维度上的特征被分类的条件概率之间是相互独立的。对朴素贝叶斯算法更深
- 【机器学习】朴素贝叶斯(Naive Bayes)
蓝色蛋黄包
机器学习
【机器学习】k近邻算法(KNN)【机器学习】决策树(DecisionTree)【机器学习】朴素贝叶斯(NaiveBayes)1.概述贝叶斯分类算法是统计学的一种概率分类方法,朴素贝叶斯分类(NaiveBayes)是贝叶斯分类中最简单的一种。分类原理:利用贝叶斯公式根据某特征的先验概率计算出其后验概率,然后选择具有最大后验概率的类作为该特征所属的类。之所以称之为”朴素”,是因为贝叶斯分类只做最原始、
- 机器学习4—分类算法之朴素贝叶斯 (Naive Bayes)
小白只对大佬的文章感兴趣
机器学习机器学习分类算法
朴素贝叶斯(NaiveBayes)前言一、贝叶斯定理1.1定理推导1.2贝叶斯定理例子二、朴素贝叶斯1.高斯朴素贝叶斯(GaussianNB)2.多项分布朴素贝叶斯(MultinomialNB)3.伯努利分布朴素贝叶斯(BernoulliNB)4.三种朴素贝叶斯的对比三、朴素贝叶斯算法实现总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很
- 使用Naive Bayes进行文本分类
bitcarmanlee
textclassifierbayesnaive文本分类
1.NaiveBayes算法朴素贝叶斯是一个简单但是十分高效的算法,在处理不是特别复杂的文本分类问题时,准确率相当不错,而且速度很快。像经典的垃圾邮件判别就是朴素贝叶斯算法的一个成功案例。简单复习一下Bayes的原理:Bayes公式:P(AB)=P(A∣B)P(B)=P(B∣A)P(A)P(AB)=P(A|B)P(B)=P(B|A)P(A)P(AB)=P(A∣B)P(B)=P(B∣A)P(A)P(
- sklearn中Naive Bayes的原理及使用案例
python慕遥
机器学习与深度学习sklearn人工智能机器学习
大家好,今天本文将介绍sklearn中NaiveBayes的原理及使用案例。一、NaiveBayes的原理朴素贝叶斯(NaiveBayes)是一种基于贝叶斯定理的分类算法,它假设所有特征之间相互独立,即给定类别的情况下,特征之间是条件独立的。朴素贝叶斯的基本思想是通过计算后验概率来进行分类,即给定样本的特征,计算出样本属于每个类别的概率,然后选择概率最大的类别作为分类结果。朴素贝叶斯的计算过程如下
- 机器学习算法--朴素贝叶斯(Naive Bayes)
小森( ﹡ˆoˆ﹡ )
机器学习算法人工智能
实验环境1.python3.72.numpy>='1.16.4'3.sklearn>='0.23.1'朴素贝叶斯的介绍朴素贝叶斯算法(NaiveBayes,NB)是应用最为广泛的分类算法之一。它是基于贝叶斯定义和特征条件独立假设的分类器方法。NB模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。当年的垃圾邮件分类都是基于朴素贝叶斯分类器识别的。什么是条件概率,我们从一个摸球的例子来理解。
- 《统计学习》--朴素贝叶斯算法
汪汪军师
朴素贝叶斯法简介:英文名naiveBayes,是基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入输出的联合概率分布;然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出y。
- 机器学习之朴素贝叶斯(Naive Bayes)附代码
贾斯汀玛尔斯
数据湖python机器学习概率论人工智能
概念朴素贝叶斯(NaiveBayes)是一种基于贝叶斯定理的机器学习算法,它被广泛用于分类和文本分析任务。该算法的"朴素"体现在对特征之间的条件独立性的假设,即给定类别,特征之间是相互独立的。尽管这个假设在实际情况中并不总是成立,但这种简化有助于降低计算复杂度,使得朴素贝叶斯成为一个简单而有效的分类算法。贝叶斯定理:在贝叶斯定理中,我们通过先验概率和条件概率来计算后验概率。对于分类问题,朴素贝叶斯
- NaiveBayes
迷失蔚蓝_fd81
贝叶斯公式+条件独立假设=朴素贝叶斯方法$$P(Y|X)=\frac{P(X|Y)}{P(X)}$$其中P(Y)叫做先验概率,P(Y|X)叫做后验概率,P(Y,X)叫做联合概率。1.P(“属于某类”|“具有某特征”)=在已知某样本“具有某特征”的条件下,该样本“属于某类”的概率。所以叫做『后验概率』。2.P(“具有某特征”|“属于某类”)=在已知某样本“属于某类”的条件下,该样本“具有某特征”的概
- 对于分类任务当样本较少时,什么算法较为合适?
有Li
算法分类数据挖掘
当样本较少时,可以考虑使用以下算法:1朴素贝叶斯分类器(NaiveBayes):朴素贝叶斯是一种简单而高效的分类算法,它假设所有特征都是相互独立的,并基于贝叶斯定理进行分类。由于其简单性和对小样本数据的适应能力,朴素贝叶斯在样本较少的情况下表现良好。2决策树(DecisionTrees):决策树是一种基于树形结构的分类算法,它通过一系列的判断节点和叶节点来进行分类。决策树算法通常易于理解和解释,并
- 日撸java_day66-68
luv_x_c
java算法
文章目录主动学习ALEC代码运行结果主动学习ALEC代码packagemachineLearning.activelearning;importweka.core.Instances;importjava.io.FileReader;importjava.io.IOException;importjava.util.Arrays;/***ClassName:Alec*Package:machine
- 斯坦福机器学习 Lecture5 (判别学习算法、GDA 高斯判别分析,skip)
shimly123456
斯坦福机器学习机器学习人工智能
讲解GDA(高斯判别分析)目前我们学习的所有学习算法(线性回归和逻辑回归和广义线性模型)被称为判别学习算法(discriminative)今天要讲生成学习算法TODO:here
- 机器学习---朴素贝叶斯算法
30岁老阿姨
机器学习机器学习算法人工智能
朴素贝叶斯(NaiveBayes,NB)算法是基于贝叶斯定理与特征条件独立假设的分类方法,该算法是有监督的学习算法,解决的是分类问题,是将一个未知样本分到几个预先已知类别的过程。朴素贝叶斯的思想就是根据某些个先验概率计算Y变量属于某个类别的后验概率,也就是根据先前事件的有关数据估计未来某个事件发生的概率。1、举例:一个学校内有60%的学生是男生,40%的学生是女生。根据统计,男生总是穿长裤,女生则
- ERROR:sf is not compatible with GDAL version below 2.0.1
一个人旅行*-*
GDAL
在安装monocle3时,出现报错信息如下:devtools::install_github('cole-trapnell-lab/monocle3')显示GDAL版本不对,必须得更新到2.0.1以上,于是尝试更新版本。sudoadd-apt-repository-yppa:ubuntugis/ppasudoaptupdatesudoaptupgrade但更新版本后,显示版本仍为1.9.2。gda
- geemap学习笔记018:非监督分类
静观云起
geemap遥感Python学习笔记分类
前言非监督分类是遥感影像中非常常用的一种分类方式,下图是EarthEngine中常用的聚类方法,本节就以landsat8数据为例,采用ee.Clusterer.wekaKMeans()方法进行聚类分类。1导入库并显示地图importeeimportgeemapMap=geemap.Map()Map2添加数据point=ee.Geometry.Point([-87.7719,41.8799])#初始
- 数据挖掘课程设计——基于关联规则挖掘的美国国会议员投票行为分析(使用weka)
Moonee_
数据挖掘课程设计数据挖掘课程设计weka算法
基于关联规则挖掘的美国国会议员投票行为分析一、基本原理二、数据结果处理与分析1.数据预处理与分析(Weka实现/代码实现)①数据集说明②数据预处理(weka)③代码实现Apriori算法④关联规则分析⑤散点图分析⑥修改参数设置三、结论一、基本原理本项目使用了关联规则挖掘这一数据挖掘技术来分析美国国会议员投票行为,揭示出影响议员投票结果的因素和规律。关联规则挖掘是一种发现数据集中频繁项集之间关系的方
- QIIME2进阶六_QIIME2训练分类器及物种注释
环微分析
环境微生物生物信息分析分享板生物信息学
本文我们主要介绍了如何训练NaiveBayes分类器并把这个分类器应用于扩增子基因序列的物种注释与可视化。本教程将使用来自人源化(humanized)小鼠的一组粪便样品,展示16SrRNA基因扩增子数据的“典型”QIIME2分析。本教程旨在探讨人源化小鼠的遗传背景影响微生物群落的假设。然而,我们还需要考虑其他可能驱动微生物结构而不是小鼠基因型的混杂因素。在本节中,我们将探索样本的物种组成情况。这个
- java线程的无限循环和退出
3213213333332132
java
最近想写一个游戏,然后碰到有关线程的问题,网上查了好多资料都没满足。
突然想起了前段时间看的有关线程的视频,于是信手拈来写了一个线程的代码片段。
希望帮助刚学java线程的童鞋
package thread;
import java.text.SimpleDateFormat;
import java.util.Calendar;
import java.util.Date
- tomcat 容器
BlueSkator
tomcatWebservlet
Tomcat的组成部分 1、server
A Server element represents the entire Catalina servlet container. (Singleton) 2、service
service包括多个connector以及一个engine,其职责为处理由connector获得的客户请求。
3、connector
一个connector
- php递归,静态变量,匿名函数使用
dcj3sjt126com
PHP递归函数匿名函数静态变量引用传参
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
- 属性颜色字体变化
周华华
JavaScript
function changSize(className){
var diva=byId("fot")
diva.className=className;
}
</script>
<style type="text/css">
.max{
background: #900;
color:#039;
- 将properties内容放置到map中
g21121
properties
代码比较简单:
private static Map<Object, Object> map;
private static Properties p;
static {
//读取properties文件
InputStream is = XXX.class.getClassLoader().getResourceAsStream("xxx.properti
- [简单]拼接字符串
53873039oycg
字符串
工作中遇到需要从Map里面取值拼接字符串的情况,自己写了个,不是很好,欢迎提出更优雅的写法,代码如下:
import java.util.HashMap;
import java.uti
- Struts2学习
云端月影
最近开始关注struts2的新特性,从这个版本开始,Struts开始使用convention-plugin代替codebehind-plugin来实现struts的零配置。
配置文件精简了,的确是简便了开发过程,但是,我们熟悉的配置突然disappear了,真是一下很不适应。跟着潮流走吧,看看该怎样来搞定convention-plugin。
使用Convention插件,你需要将其JAR文件放
- Java新手入门的30个基本概念二
aijuans
java新手java 入门
基本概念: 1.OOP中唯一关系的是对象的接口是什么,就像计算机的销售商她不管电源内部结构是怎样的,他只关系能否给你提供电就行了,也就是只要知道can or not而不是how and why.所有的程序是由一定的属性和行为对象组成的,不同的对象的访问通过函数调用来完成,对象间所有的交流都是通过方法调用,通过对封装对象数据,很大限度上提高复用率。 2.OOP中最重要的思想是类,类是模板是蓝图,
- jedis 简单使用
antlove
javarediscachecommandjedis
jedis.RedisOperationCollection.java
package jedis;
import org.apache.log4j.Logger;
import redis.clients.jedis.Jedis;
import java.util.List;
import java.util.Map;
import java.util.Set;
pub
- PL/SQL的函数和包体的基础
百合不是茶
PL/SQL编程函数包体显示包的具体数据包
由于明天举要上课,所以刚刚将代码敲了一遍PL/SQL的函数和包体的实现(单例模式过几天好好的总结下再发出来);以便明天能更好的学习PL/SQL的循环,今天太累了,所以早点睡觉,明天继续PL/SQL总有一天我会将你永远的记载在心里,,,
函数;
函数:PL/SQL中的函数相当于java中的方法;函数有返回值
定义函数的
--输入姓名找到该姓名的年薪
create or re
- Mockito(二)--实例篇
bijian1013
持续集成mockito单元测试
学习了基本知识后,就可以实战了,Mockito的实际使用还是比较麻烦的。因为在实际使用中,最常遇到的就是需要模拟第三方类库的行为。
比如现在有一个类FTPFileTransfer,实现了向FTP传输文件的功能。这个类中使用了a
- 精通Oracle10编程SQL(7)编写控制结构
bijian1013
oracle数据库plsql
/*
*编写控制结构
*/
--条件分支语句
--简单条件判断
DECLARE
v_sal NUMBER(6,2);
BEGIN
select sal into v_sal from emp
where lower(ename)=lower('&name');
if v_sal<2000 then
update emp set
- 【Log4j二】Log4j属性文件配置详解
bit1129
log4j
如下是一个log4j.properties的配置
log4j.rootCategory=INFO, stdout , R
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appe
- java集合排序笔记
白糖_
java
public class CollectionDemo implements Serializable,Comparable<CollectionDemo>{
private static final long serialVersionUID = -2958090810811192128L;
private int id;
private String nam
- java导致linux负载过高的定位方法
ronin47
定位java进程ID
可以使用top或ps -ef |grep java
![图片描述][1]
根据进程ID找到最消耗资源的java pid
比如第一步找到的进程ID为5431
执行
top -p 5431 -H
![图片描述][2]
打印java栈信息
$ jstack -l 5431 > 5431.log
在栈信息中定位具体问题
将消耗资源的Java PID转
- 给定能随机生成整数1到5的函数,写出能随机生成整数1到7的函数
bylijinnan
函数
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
public class RandNFromRand5 {
/**
题目:给定能随机生成整数1到5的函数,写出能随机生成整数1到7的函数。
解法1:
f(k) = (x0-1)*5^0+(x1-
- PL/SQL Developer保存布局
Kai_Ge
近日由于项目需要,数据库从DB2迁移到ORCAL,因此数据库连接客户端选择了PL/SQL Developer。由于软件运用不熟悉,造成了很多麻烦,最主要的就是进入后,左边列表有很多选项,自己删除了一些选项卡,布局很满意了,下次进入后又恢复了以前的布局,很是苦恼。在众多PL/SQL Developer使用技巧中找到如下这段:
&n
- [未来战士计划]超能查派[剧透,慎入]
comsci
计划
非常好看,超能查派,这部电影......为我们这些热爱人工智能的工程技术人员提供一些参考意见和思想........
虽然电影里面的人物形象不是非常的可爱....但是非常的贴近现实生活....
&nbs
- Google Map API V2
dai_lm
google map
以后如果要开发包含google map的程序就更麻烦咯
http://www.cnblogs.com/mengdd/archive/2013/01/01/2841390.html
找到篇不错的文章,大家可以参考一下
http://blog.sina.com.cn/s/blog_c2839d410101jahv.html
1. 创建Android工程
由于v2的key需要G
- java数据计算层的几种解决方法2
datamachine
javasql集算器
2、SQL
SQL/SP/JDBC在这里属于一类,这是老牌的数据计算层,性能和灵活性是它的优势。但随着新情况的不断出现,单纯用SQL已经难以满足需求,比如: JAVA开发规模的扩大,数据量的剧增,复杂计算问题的涌现。虽然SQL得高分的指标不多,但都是权重最高的。
成熟度:5星。最成熟的。
- Linux下Telnet的安装与运行
dcj3sjt126com
linuxtelnet
Linux下Telnet的安装与运行 linux默认是使用SSH服务的 而不安装telnet服务 如果要使用telnet 就必须先安装相应的软件包 即使安装了软件包 默认的设置telnet 服务也是不运行的 需要手工进行设置 如果是redhat9,则在第三张光盘中找到 telnet-server-0.17-25.i386.rpm
- PHP中钩子函数的实现与认识
dcj3sjt126com
PHP
假如有这么一段程序:
function fun(){
fun1();
fun2();
}
首先程序执行完fun1()之后执行fun2()然后fun()结束。
但是,假如我们想对函数做一些变化。比如说,fun是一个解析函数,我们希望后期可以提供丰富的解析函数,而究竟用哪个函数解析,我们希望在配置文件中配置。这个时候就可以发挥钩子的力量了。
我们可以在fu
- EOS中的WorkSpace密码修改
蕃薯耀
修改WorkSpace密码
EOS中BPS的WorkSpace密码修改
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--SpringSecurity相关配置【SpringSecurityConfig】
hanqunfeng
SpringSecurity
SpringSecurity的配置相对来说有些复杂,如果是完整的bean配置,则需要配置大量的bean,所以xml配置时使用了命名空间来简化配置,同样,spring为我们提供了一个抽象类WebSecurityConfigurerAdapter和一个注解@EnableWebMvcSecurity,达到同样减少bean配置的目的,如下:
applicationContex
- ie 9 kendo ui中ajax跨域的问题
jackyrong
AJAX跨域
这两天遇到个问题,kendo ui的datagrid,根据json去读取数据,然后前端通过kendo ui的datagrid去渲染,但很奇怪的是,在ie 10,ie 11,chrome,firefox等浏览器中,同样的程序,
浏览起来是没问题的,但把应用放到公网上的一台服务器,
却发现如下情况:
1) ie 9下,不能出现任何数据,但用IE 9浏览器浏览本机的应用,却没任何问题
- 不要让别人笑你不能成为程序员
lampcy
编程程序员
在经历六个月的编程集训之后,我刚刚完成了我的第一次一对一的编码评估。但是事情并没有如我所想的那般顺利。
说实话,我感觉我的脑细胞像被轰炸过一样。
手慢慢地离开键盘,心里很压抑。不禁默默祈祷:一切都会进展顺利的,对吧?至少有些地方我的回答应该是没有遗漏的,是不是?
难道我选择编程真的是一个巨大的错误吗——我真的永远也成不了程序员吗?
我需要一点点安慰。在自我怀疑,不安全感和脆弱等等像龙卷风一
- 马皇后的贤德
nannan408
马皇后不怕朱元璋的坏脾气,并敢理直气壮地吹耳边风。众所周知,朱元璋不喜欢女人干政,他认为“后妃虽母仪天下,然不可使干政事”,因为“宠之太过,则骄恣犯分,上下失序”,因此还特地命人纂述《女诫》,以示警诫。但马皇后是个例外。
有一次,马皇后问朱元璋道:“如今天下老百姓安居乐业了吗?”朱元璋不高兴地回答:“这不是你应该问的。”马皇后振振有词地回敬道:“陛下是天下之父,
- 选择某个属性值最大的那条记录(不仅仅包含指定属性,而是想要什么属性都可以)
Rainbow702
sqlgroup by最大值max最大的那条记录
好久好久不写SQL了,技能退化严重啊!!!
直入主题:
比如我有一张表,file_info,
它有两个属性(但实际不只,我这里只是作说明用):
file_code, file_version
同一个code可能对应多个version
现在,我想针对每一个code,取得它相关的记录中,version 值 最大的那条记录,
SQL如下:
select
*
- VBScript脚本语言
tntxia
VBScript
VBScript 是基于VB的脚本语言。主要用于Asp和Excel的编程。
VB家族语言简介
Visual Basic 6.0
源于BASIC语言。
由微软公司开发的包含协助开发环境的事
- java中枚举类型的使用
xiao1zhao2
javaenum枚举1.5新特性
枚举类型是j2se在1.5引入的新的类型,通过关键字enum来定义,常用来存储一些常量.
1.定义一个简单的枚举类型
public enum Sex {
MAN,
WOMAN
}
枚举类型本质是类,编译此段代码会生成.class文件.通过Sex.MAN来访问Sex中的成员,其返回值是Sex类型.
2.常用方法
静态的values()方