斜率优化咯。
一开始不知道怎么O(1)转移,看了别人blog才发现可以这么玩。
/* Footprints In The Blood Soaked Snow */ #include <cstdio> #include <algorithm> using namespace std; typedef long long LL; const int maxn = 1000005, maxq = maxn; int n, q[maxq]; LL dp[maxn], sum[maxn], dif[maxn], x[maxn], p[maxn], c[maxn]; inline int iread() { int f = 1, x = 0; char ch = getchar(); for(; ch < '0' || ch > '9'; ch = getchar()) f = ch == '-' ? -1 : 1; for(; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + ch - '0'; return f * x; } inline LL dy(int a, int b) { return (dp[a] + dif[a]) - (dp[b] + dif[b]); } inline LL dx(int a, int b) { return sum[a] - sum[b]; } int main() { n = iread(); for(int i = 1; i <= n; i++) x[i] = iread(), p[i] = iread(), c[i] = iread(); for(int i = 1; i <= n; i++) sum[i] = sum[i - 1] + p[i], dif[i] = dif[i - 1] + x[i] * p[i]; int h = 1, t = 0; q[++t] = 0; for(int i = 1; i <= n; i++) { for(; h < t && dy(q[h + 1], q[h]) < dx(q[h + 1], q[h]) * x[i]; h++); dp[i] = dp[q[h]] + (sum[i] - sum[q[h]]) * x[i] - (dif[i] - dif[q[h]]) + c[i] ; for(; h < t && dy(q[t], q[t - 1]) * dx(i, q[t]) >= dy(i, q[t]) * dx(q[t], q[t - 1]); t--); q[++t] = i; } printf("%lld\n", dp[n]); return 0; }