写了各种姿势,最后还是得照着网上题解才能AC= =
参考了凯爷blog:http://blog.csdn.net/lethelody/article/details/44781927
#include <cstdio> #include <algorithm> using namespace std; typedef long long LL; const int maxn = 100005, maxq = maxn; int n, k, q[maxq]; LL f[maxn][2], sum[maxn]; inline int iread() { int f = 1, x = 0; char ch = getchar(); for(; ch < '0' || ch > '9'; ch = getchar()) f = ch == '-' ? -1 : 1; for(; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + ch - '0'; return f * x; } inline LL y(int a, int b, int t) { return (f[a][t] - sum[a] * sum[a]) - (f[b][t] - sum[b] * sum[b]); } inline LL x(int a, int b) { return sum[a] - sum[b]; } int main() { n = iread(); k = iread(); for(int i = 1; i <= n; i++) sum[i] = iread() + sum[i - 1]; for(int j = 1; j <= k; j++) { int h = 1, t = 1; q[h] = j; for(int i = j + 1; i <= n; i++) { for(; h < t && y(q[h + 1], q[h], ~j & 1) >= -sum[i] * x(q[h + 1], q[h]); h++); f[i][j & 1] = f[q[h]][~j & 1] + sum[q[h]] * (sum[i] - sum[q[h]]); for(; h < t && y(q[t], q[t - 1], ~j & 1) * x(i, q[t]) <= y(i, q[t], ~j & 1) * x(q[t], q[t - 1]); t--); q[++t] = i; } } printf("%lld\n", f[n][k & 1]); return 0; }