- 强连通分量——tarjan算法缩点
小陈同学_
图论算法图论c++
一.什么是强连通分量?强连通分量:在有向图G中,如果两个顶点u,v间(u->v)有一条从u到v的有向路径,同时还有一条从v到u的有向路径,则称两个顶点强连通(stronglyconnected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通分量。简单点说就是:如果一个有向图中,存在一条回路,所有的结点至少被经过一次,这样的图为强连通图。在强连图图的基础上
- 强连通分量-tarjan算法缩点
小陈同学_
算法图论数据结构
一.什么是强连通分量?强连通分量:在有向图G中,如果两个顶点u,v间(u->v)有一条从u到v的有向路径,同时还有一条从v到u的有向路径,则称两个顶点强连通(stronglyconnected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通分量。简单点说就是:如果一个有向图中,存在一条回路,所有的结点至少被经过一次,这样的图为强连通图。在强连图图的基础上
- 2.18学习总结
啊这泪目了
学习数据结构
链式前向星的处理和建立tarjan对割点和缩点的使用拓扑排序链式前向星:预处理:structedge{intfrom;intto;intnext;}e[N];intn,m,head[N],dfn[N],low[N],tot,color[N],num[N],out[N],s,instack[N],id;处理:voidadd(intu,intv){e[++tot].from=u;e[tot].to=v
- 2.17学习总结
啊这泪目了
学习
tarjan【模板】缩点https://www.luogu.com.cn/problem/P3387题目描述给定一个�n个点�m条边有向图,每个点有一个权值,求一条路径,使路径经过的点权值之和最大。你只需要求出这个权值和。允许多次经过一条边或者一个点,但是,重复经过的点,权值只计算一次。输入格式第一行两个正整数�,�n,m第二行�n个整数,其中第�i个数��ai表示点�i的点权。第三至�+2m+2
- HDUOJ 4738 Caocao‘s Bridges 题解 桥 割边 Tarjan
kaiserqzyue
算法题目c++算法图论
题目链接:HDUOJ4738Caocao’sBridges题目描述:给定一个无向图,你可以选择最多删除一条边,删除边的代价是边的边权(特殊地,删除一条边权为0的边的代价是1),问最小代价使得图不连通。如果无论如何图都是连通的,那么则输出-1。题解:题目也就是需要我们求一条桥边,这个桥边所拥有的边权最小。我们只需要求出所有的桥边,然后对边权取一个最小值即可(需要注意边权为0的边我们要将其变成边权为1
- POJ 2117 Electricity 题解 Tarjan 割点
kaiserqzyue
算法题目算法图论c++
题目链接:POJ2117Electricity题目描述:给定一张无向图,问删除一个结点后最多会有多少个强连通分量。题解:我们用scc表示初始的图中有多少个强连通分量,该值可以通过DFS计算出来。接下来我们只需要计算出删除每个割点会增加的强连通分量个数cnt即可,答案即为cnt+ans,对于一个强连通分量中的非根结点,用son表示有多少个子结点能够返回到当前结点或者当前结点之前遍历的结点,那么不难发
- POJ 1523 SPF题解 Tarjan 割点
kaiserqzyue
算法题目c++算法图论
题目链接:POJ1523SPF题目描述:给定一张连通的无向图,问哪些结点是割点,分别删除各个割点时会产生几个强连通分量。题解:求割点可以通过Tarjan算法来解决,我们接下来考虑删除一个割点后会产生多少个联通块。在Tarjan算法中,我们判断一个点是否是割点是通过其子结点能否回到遍历过的结点来判断。如果当前遍历的结点存在一个子结点不能够回到已经遍历过的结点,那么当前遍历的结点便是一个割点(这样的依
- Luogu P5058 [ZJOI2004] 嗅探器 题解 Tarjan 割点
kaiserqzyue
算法题目算法图论c++
题目链接:LuoguP5058[ZJOI2004]嗅探器题目描述:给定一张无向图,以及两个点s,t,你需要找到一个点(这个点不能是s或t),这个点被所有s,t之间的路径所经过。如果不存在这样的点,输出Nosolution。如果有多个这样的点,输出编号最小的。题解:我们很容易发现要删除的点一定是割点(按照题意,删除后,s与t不能进行通信,这说明强连通分量增加了)。我们只需要考虑哪些割点是满足条件的。
- 支配树与Lengauer-Tarjan算法
罗博士
ACM数据结构算法支配树
支配树与Lengauer-Tarjan算法支配点dfs序与半支配点确定支配点算法与代码支配点在一个有向图中,确定SSS作为起点。对某个点xxx而言,如果点yyy是xxx的支配点,则从SSS到xxx的任意路径均必须经过yyy。显然支配点可能不止一个。但如果将xxx的最近支配点到xxx连一条边,则会形成一个树形结构,称之为支配树。假设有图digraphdemo{1->{2}2->{3}3->{4,5,
- 第四章 图论(4):SPFA求负环、差分约束、LCA
路哞哞
算法笔记图论算法LCA
目录一、SPFA求负环1.0SPFA判断负环1.1虫洞1.2观光奶牛(spfa&&01分数规划)1.3单词环二、差分约束2.1糖果2.2区间2.3排队布局2.4雇佣收银员2.5再卖菜三、最近公共祖先(LCA)3.1祖孙询问(倍增法)3.2距离(Tarjan算法)3.3次小生成树3.4暗之连锁一、SPFA求负环一般会和01分数规划结合负环:一个环且环上所有权值之和小于零负环对最短路径的影响:如果在求
- 负环与差分约束
「已注销」
ACM--图论
文章目录负环与差分约束1.基本概念、方法1.1负环1.1.1spfa判负环/正环1.1.2tarjan+缩点判断正环/负环1.1.3拓扑排序判断正环/负环1.2差分约束2.例题2.1负环/正环判定2.1.1spfa判断负环/正环2.1.2tarjan求scc+缩点判断正环/负环2.1.3拓扑排序判断正环/负环2.2差分约束2.2.1spfa差分约束2.2.2tarjan求scc+缩点+dp差分约束
- 1171. 距离(离线求LCA:tarjan算法)
Landing_on_Mars
#最近公共祖先算法数据结构图论
1171.距离-AcWing题库给出n个点的一棵树,多次询问两点之间的最短距离。注意:边是无向的。所有节点的编号是1,2,…,n1。输入格式第一行为两个整数n和m。n表示点数,m表示询问次数;下来n−1行,每行三个整数x,y,k,表示点x和点y之间存在一条边长度为k;再接下来m行,每行两个整数x,y,表示询问点x到点y的最短距离。树中结点编号从1到n。输出格式共m行,对于每次询问,输出一行询问结果
- Tarjan 算法思想求强连通分量及求割点模板(超详细图解)
harry1213812138
图论算法算法tarjan强连通分量割点割边
割点定义在一个无向图中,如果有一个顶点,删除这个顶点及其相关联的边后,图的连通分量增多,就称该点是割点,该点构成的集合就是割点集合。简单来说就是去掉该点后其所在的连通图不再连通,则该点称为割点。若去掉某条边后,该图不再连通,则该边称为桥或割边。若在图G中(如下图),删除uv这条边后,图的连通分量增多,则u和v点称为割点,uv这条边称为桥或割边。显然,有割点的图不是哈密尔顿图。Tarjan算法求强连
- 《算法竞赛进阶指南》tarjan做法 银河
啥也不会hh
算法竞赛进阶指南图论算法竞赛进阶指南算法提高课二刷算法c++最短路图论tarjan
银河中的恒星浩如烟海,但是我们只关注那些最亮的恒星。我们用一个正整数来表示恒星的亮度,数值越大则恒星就越亮,恒星的亮度最暗是1。现在对于N颗我们关注的恒星,有M对亮度之间的相对关系已经判明。你的任务就是求出这N颗恒星的亮度值总和至少有多大。输入格式第一行给出两个整数N和M。之后M行,每行三个整数T,A,B,表示一对恒星(A,B)之间的亮度关系。恒星的编号从1开始。如果T=1,说明A和B亮度相等。如
- Tarjan 算法及其应用
Kwjdefulgn
图论基础
Tarjan算法及其应用NO.1求强连通分量学习链接:https://www.cnblogs.com/shadowland/p/5872257.html学习心得:dfn[cur]记录访问cur结点的时间戳,low[cur]记录cur结点及其子树中时间戳最小是多少,严格意义上来讲low[cur],记录的是在不回头遍历父节点的前提下第一次能访问到的最早的已遍历结点的时间戳。显然当访问cur结点的子节点
- Tarjan算法
mrcrack
codeforces
Tarjan算法此文https://www.luogu.com.cn/blog/styx-ferryman/chu-tan-tarjan-suan-fa-qiu-qiang-lian-tong-fen-liang-post介绍不错,摘抄如下“tarjan陪伴强联通分量生成树完成后思路才闪光欧拉跑过的七桥古塘让你心驰神往”----《膜你抄》tarjan是一种求强连通分量、双连通分量的常用算法,其拓展
- Tarjan算法超超超详解(ACM/OI)(强连通分量/缩点)(图论)(C++)
seh_sjlj
OIC/C++算法
本文将持续更新。I前置芝士:深度优先搜索与边的分类首先我们来写一段基本的DFS算法(采用链式前向星存图):boolvis[MAXN];voiddfs(intu){vis[u]=true;for(inte=first[u];e;e=nxt[e]){//遍历连接u的每条边intv=go[e];if(!vis[v])dfs(v);//如果没有访问过就往下继续搜}}这段代码我们再熟悉不过了。接下来我们要引
- Tarjan算法与连通性
流苏贺风
图论算法算法dfs强联通图论
Tarjan算法Tarjan与有向图一、强连通定义二、Tarjan算法求强连通分量2.tarjan的构成要素3.算法的分析4.算法的实现11,未被访问:22,被访问过,已经在栈中:5.算法的代码实物三,缩点四,实际应用Tarjan和无向图一,定义和性质二,割边(桥)和E-DCC11,模板22,实际应用三,割点11,概况22,实现四,V-DCC(点双联通分量)1,求v-dcc2,v-dcc特异性缩点
- 超级详细的Tarjan算法
ivysister
acm题tarjan最大连通分量
有向图强连通分量]在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(stronglyconnected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。非强连通图有向图的极大强连通子图,称为强连通分量(stronglyconnectedcomponents)。下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达。{5},{6}也分别是两个强连通分量。
- Tarjan 算法超级详解
键盘上的艺术家w
#算法-图论Tarjan算法超级详解
首先我们引入定义:1、有向图G中,以顶点v为起点的弧的数目称为v的出度,记做deg+(v);以顶点v为终点的弧的数目称为v的入度,记做deg-(v)。2、如果在有向图G中,有一条有向道路,则v称为u可达的,或者说,从u可达v。3、如果有向图G的任意两个顶点都互相可达,则称图G是强连通图,如果有向图G存在两顶点u和v使得u不能到v,或者v不能到u,则称图G是强非连通图。4、如果有向图G不是强连通图,
- C++算法篇:DFS超详细解析(2)--- tarjan算法求无向图割边
Xunlan_
C++算法篇c++算法开发语言dfs
v边)low[v]dep[u]low[v]>dep[u]low[v]>dep[u]:意味着v只能回到u以下,此时若拿掉u-v,u、v间回断开,故是桥。(很久以前的笔记)至此,我们已经明确割边的判断,最后一件事便是求low值了:未访问过的点(树边):那么这是原节点的子孙,只需在dfs改点后将二者low取min(因为存在下方没有树边的情况此时不需更新low)已访问的点(回边):(边u->v)取low[
- 图论 强(双)连通分量tarjan算法
Little_Match_Boy
ACM图论图论算法c++
强(双)连通分量tarjan算法这里挂两个题,第一个题求强联通分量,第二个题求割点先说一下tarjan的读法:taran(taren)(j不发音)hdu5934(tarjan算法+缩点)bombThereareNbombsneedingexploding.Eachbombhasthreeattributes:explodingradiusri,position(xi,yi)andlighting-
- Tarjan 算法(超详细!!)
一棵油菜花
算法篇算法深度优先图论c++笔记
推荐在cnblogs上阅读Tarjan算法前言说来惭愧,这个模板仅是绿的算法至今我才学会。我还记得去年CSP2023坐大巴路上拿着书背Tarjan的模板。虽然那年没有考连通分量类似的题目。现在做题遇到了Tarjan,那么,重学,开写!另,要想学好此算法的第一件事——膜拜Tarjan爷爷。Tarjan算法到底是什么其实广义上有许多算法都是Tarjan发明的(大名鼎鼎的Link-Cut-Tree正是出
- Lowest Common Ancestor
lyh20021209
数据结构与算法算法leetcode数据结构java并查集
模板1.Tarjan一个讲的很好的视频:D10Tarjan算法P3379【模板】最近公共祖先(LCA)_哔哩哔哩_bilibili,董晓算法出品。Tarjan总体来说可以概括为:记录访达:记录某个节点是否已经访问过,防环向下深搜:深搜子节点回溯指父:低层回溯时将子节点归于当前父节点所在等价类中离时查询:本层向上回溯时查询与当前节点所有相关的LCA,记录答案packageTarjan.LCA;imp
- 20 求图的割点和割边—Tarjan算法
xuqw11111
01算法初步—啊哈算法图论算法数据结构c++
1图的割点问题描述去掉2号城市,这样剩下的城市之间就不能两两相互到达。例如4号城市不能到5号城市,6号城市也不能到达1号城市等等。下面将问题抽象化。在一个无向连通图中,如果删除某个顶点后,图不再连通(即任意两点之间不能相互到达),我们称这样的顶点为割点(或者称割顶)。那么割点如何求呢?解决思路很容易想到的方法是:依次删除每一个顶点,然后用深度优先搜索或者广度优先搜索来检查图是否依然连通。如果删除某
- 【分离的路径 USACO 2006】(DCC | 边双连通分量 | 悬挂点 | 表思想 | 重边special judge | tarjan alg.)
XNB's Not a Beginner
数据结构算法c++图搜索图论
jumper题目大意:有n个旅游景点r条路线,每条路线双向链接两个景区由于每条线路都有可能被施工,并且保证每次施工只对一条线路进行。问至少需要添加几条边,能保证不论那条边在修建时,城市始终还是连通的/**分离的路径USACO2006jan.Gold/roadconstructionPOJ3352*/#include#include#include#include#include#define_uf
- 【Network POJ-3417】 (DFS | TARJAN| LCA | 树上差分)
XNB's Not a Beginner
深度优先算法
传送门题目大意:给定无根树,N个节点,N-1条树边,和M条“附加边”;删除一条树边和一条附加边使图不再连通,求总方案数;/**NetworkPOJ3417*/#include#include#includeconstexprintNN{(int)(1e5)+1},MM{(int)(1e5)0;add(u,v),add(v,u))scanf("%d%d",&u,&v);(void)tarjan(1,
- 【LeetCode题目拓展】第207题 课程表 拓展(拓扑排序、Tarjan算法、Kosaraju算法)
北顾.岛城
面试算法leetcode算法leetcode职场和发展学习深度优先面试
文章目录一、拓扑排序题目二、题目拓展1.思路分析2.tarjan算法3.kosaraju算法一、拓扑排序题目最近在看一个算法课程的时候看到了一个比较好玩的题目的扩展,它的原题如下:对应的LeetCode题目为207.课程表这个题目本身来说比较简单,就是一道标准的拓扑排序题目,解法代码如下:importjava.util.ArrayList;importjava.util.LinkedList;im
- B3610 [图论与代数结构 801] 无向图的块 题解
luogu_scp020
题解c++算法
B3610[图论与代数结构801]无向图的块题解202320232023,再见。202420242024,你好!解法其实就是统计点双连通分量的个数。需要注意的是,孤立点在这里不被看作块。本文使用tarjan算法来解决这道题。概念明晰时间戳:这里记为dfnidfn_idfni,表示第一次深度优先搜索到节点iii的时间。时间time∈N+time\in\mathbb{N}^+time∈N+且随这搜索依
- 刺猬的玻璃心博客目录:
weixin_30463341
开发工具数据结构与算法
第一篇:入坑第一篇目录:常用技术类:1,poj题库题目分类:poj题库分类2,vim命令大全:vim命令大全(转)3,noip提高组必须掌握内容(转载)1,图论:1,spfa:1,裸裸的spfa~嘿嘿嘿!2,spfa-codevs1021题解3,BZOJ1003物流运输最短路+DP//spfa+DP2,拓扑排序1,拓扑排序2,拓扑排序1.奖金3,tarjan1,全网最!详!细!tarjan算法讲解
- 异常的核心类Throwable
无量
java源码异常处理exception
java异常的核心是Throwable,其他的如Error和Exception都是继承的这个类 里面有个核心参数是detailMessage,记录异常信息,getMessage核心方法,获取这个参数的值,我们可以自己定义自己的异常类,去继承这个Exception就可以了,方法基本上,用父类的构造方法就OK,所以这么看异常是不是很easy
package com.natsu;
- mongoDB 游标(cursor) 实现分页 迭代
开窍的石头
mongodb
上篇中我们讲了mongoDB 中的查询函数,现在我们讲mongo中如何做分页查询
如何声明一个游标
var mycursor = db.user.find({_id:{$lte:5}});
迭代显示游标数
- MySQL数据库INNODB 表损坏修复处理过程
0624chenhong
tomcatmysql
最近mysql数据库经常死掉,用命令net stop mysql命令也无法停掉,关闭Tomcat的时候,出现Waiting for N instance(s) to be deallocated 信息。查了下,大概就是程序没有对数据库连接释放,导致Connection泄露了。因为用的是开元集成的平台,内部程序也不可能一下子给改掉的,就验证一下咯。启动Tomcat,用户登录系统,用netstat -
- 剖析如何与设计人员沟通
不懂事的小屁孩
工作
最近做图烦死了,不停的改图,改图……。烦,倒不是因为改,而是反反复复的改,人都会死。很多需求人员不知该如何与设计人员沟通,不明白如何使设计人员知道他所要的效果,结果只能是沟通变成了扯淡,改图变成了应付。
那应该如何与设计人员沟通呢?
我认为设计人员与需求人员先天就存在语言障碍。对一个合格的设计人员来说,整天玩的都是点、线、面、配色,哪种构图看起来协调;哪种配色看起来合理心里跟明镜似的,
- qq空间刷评论工具
换个号韩国红果果
JavaScript
var a=document.getElementsByClassName('textinput');
var b=[];
for(var m=0;m<a.length;m++){
if(a[m].getAttribute('placeholder')!=null)
b.push(a[m])
}
var l
- S2SH整合之session
灵静志远
springAOPstrutssession
错误信息:
Caused by: org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'cartService': Scope 'session' is not active for the current thread; consider defining a scoped
- xmp标签
a-john
标签
今天在处理数据的显示上遇到一个问题:
var html = '<li><div class="pl-nr"><span class="user-name">' + user
+ '</span>' + text + '</div></li>';
ulComme
- Ajax的常用技巧(2)---实现Web页面中的级联菜单
aijuans
Ajax
在网络上显示数据,往往只显示数据中的一部分信息,如文章标题,产品名称等。如果浏览器要查看所有信息,只需点击相关链接即可。在web技术中,可以采用级联菜单完成上述操作。根据用户的选择,动态展开,并显示出对应选项子菜单的内容。 在传统的web实现方式中,一般是在页面初始化时动态获取到服务端数据库中对应的所有子菜单中的信息,放置到页面中对应的位置,然后再结合CSS层叠样式表动态控制对应子菜单的显示或者隐
- 天-安-门,好高
atongyeye
情感
我是85后,北漂一族,之前房租1100,因为租房合同到期,再续,房租就要涨150。最近网上新闻,地铁也要涨价。算了一下,涨价之后,每次坐地铁由原来2块变成6块。仅坐地铁费用,一个月就要涨200。内心苦痛。
晚上躺在床上一个人想了很久,很久。
我生在农
- android 动画
百合不是茶
android透明度平移缩放旋转
android的动画有两种 tween动画和Frame动画
tween动画;,透明度,缩放,旋转,平移效果
Animation 动画
AlphaAnimation 渐变透明度
RotateAnimation 画面旋转
ScaleAnimation 渐变尺寸缩放
TranslateAnimation 位置移动
Animation
- 查看本机网络信息的cmd脚本
bijian1013
cmd
@echo 您的用户名是:%USERDOMAIN%\%username%>"%userprofile%\网络参数.txt"
@echo 您的机器名是:%COMPUTERNAME%>>"%userprofile%\网络参数.txt"
@echo ___________________>>"%userprofile%\
- plsql 清除登录过的用户
征客丶
plsql
tools---preferences----logon history---history 把你想要删除的删除
--------------------------------------------------------------------
若有其他凝问或文中有错误,请及时向我指出,
我好及时改正,同时也让我们一起进步。
email : binary_spac
- 【Pig一】Pig入门
bit1129
pig
Pig安装
1.下载pig
wget http://mirror.bit.edu.cn/apache/pig/pig-0.14.0/pig-0.14.0.tar.gz
2. 解压配置环境变量
如果Pig使用Map/Reduce模式,那么需要在环境变量中,配置HADOOP_HOME环境变量
expor
- Java 线程同步几种方式
BlueSkator
volatilesynchronizedThredLocalReenTranLockConcurrent
为何要使用同步? java允许多线程并发控制,当多个线程同时操作一个可共享的资源变量时(如数据的增删改查), 将会导致数据不准确,相互之间产生冲突,因此加入同步锁以避免在该线程没有完成操作之前,被其他线程的调用, 从而保证了该变量的唯一性和准确性。 1.同步方法&
- StringUtils判断字符串是否为空的方法(转帖)
BreakingBad
nullStringUtils“”
转帖地址:http://www.cnblogs.com/shangxiaofei/p/4313111.html
public static boolean isEmpty(String str)
判断某字符串是否为空,为空的标准是 str==
null
或 str.length()==
0
- 编程之美-分层遍历二叉树
bylijinnan
java数据结构算法编程之美
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
public class LevelTraverseBinaryTree {
/**
* 编程之美 分层遍历二叉树
* 之前已经用队列实现过二叉树的层次遍历,但这次要求输出换行,因此要
- jquery取值和ajax提交复习记录
chengxuyuancsdn
jquery取值ajax提交
// 取值
// alert($("input[name='username']").val());
// alert($("input[name='password']").val());
// alert($("input[name='sex']:checked").val());
// alert($("
- 推荐国产工作流引擎嵌入式公式语法解析器-IK Expression
comsci
java应用服务器工作Excel嵌入式
这个开源软件包是国内的一位高手自行研制开发的,正如他所说的一样,我觉得它可以使一个工作流引擎上一个台阶。。。。。。欢迎大家使用,并提出意见和建议。。。
----------转帖---------------------------------------------------
IK Expression是一个开源的(OpenSource),可扩展的(Extensible),基于java语言
- 关于系统中使用多个PropertyPlaceholderConfigurer的配置及PropertyOverrideConfigurer
daizj
spring
1、PropertyPlaceholderConfigurer
Spring中PropertyPlaceholderConfigurer这个类,它是用来解析Java Properties属性文件值,并提供在spring配置期间替换使用属性值。接下来让我们逐渐的深入其配置。
基本的使用方法是:(1)
<bean id="propertyConfigurerForWZ&q
- 二叉树:二叉搜索树
dieslrae
二叉树
所谓二叉树,就是一个节点最多只能有两个子节点,而二叉搜索树就是一个经典并简单的二叉树.规则是一个节点的左子节点一定比自己小,右子节点一定大于等于自己(当然也可以反过来).在树基本平衡的时候插入,搜索和删除速度都很快,时间复杂度为O(logN).但是,如果插入的是有序的数据,那效率就会变成O(N),在这个时候,树其实变成了一个链表.
tree代码:
- C语言字符串函数大全
dcj3sjt126com
cfunction
C语言字符串函数大全
函数名: stpcpy
功 能: 拷贝一个字符串到另一个
用 法: char *stpcpy(char *destin, char *source);
程序例:
#include <stdio.h>
#include <string.h>
int main
- 友盟统计页面技巧
dcj3sjt126com
技巧
在基类调用就可以了, 基类ViewController示例代码
-(void)viewWillAppear:(BOOL)animated
{
[super viewWillAppear:animated];
[MobClick beginLogPageView:[NSString stringWithFormat:@"%@",self.class]];
- window下在同一台机器上安装多个版本jdk,修改环境变量不生效问题处理办法
flyvszhb
javajdk
window下在同一台机器上安装多个版本jdk,修改环境变量不生效问题处理办法
本机已经安装了jdk1.7,而比较早期的项目需要依赖jdk1.6,于是同时在本机安装了jdk1.6和jdk1.7.
安装jdk1.6前,执行java -version得到
C:\Users\liuxiang2>java -version
java version "1.7.0_21&quo
- Java在创建子类对象的同时会不会创建父类对象
happyqing
java创建子类对象父类对象
1.在thingking in java 的第四版第六章中明确的说了,子类对象中封装了父类对象,
2."When you create an object of the derived class, it contains within it a subobject of the base class. This subobject is the sam
- 跟我学spring3 目录贴及电子书下载
jinnianshilongnian
spring
一、《跟我学spring3》电子书下载地址:
《跟我学spring3》 (1-7 和 8-13) http://jinnianshilongnian.iteye.com/blog/pdf
跟我学spring3系列 word原版 下载
二、
源代码下载
最新依
- 第12章 Ajax(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- BI and EIM 4.0 at a glance
blueoxygen
BO
http://www.sap.com/corporate-en/press.epx?PressID=14787
有机会研究下EIM家族的两个新产品~~~~
New features of the 4.0 releases of BI and EIM solutions include:
Real-time in-memory computing –
- Java线程中yield与join方法的区别
tomcat_oracle
java
长期以来,多线程问题颇为受到面试官的青睐。虽然我个人认为我们当中很少有人能真正获得机会开发复杂的多线程应用(在过去的七年中,我得到了一个机会),但是理解多线程对增加你的信心很有用。之前,我讨论了一个wait()和sleep()方法区别的问题,这一次,我将会讨论join()和yield()方法的区别。坦白的说,实际上我并没有用过其中任何一个方法,所以,如果你感觉有不恰当的地方,请提出讨论。
&nb
- android Manifest.xml选项
阿尔萨斯
Manifest
结构
继承关系
public final class Manifest extends Objectjava.lang.Objectandroid.Manifest
内部类
class Manifest.permission权限
class Manifest.permission_group权限组
构造函数
public Manifest () 详细 androi
- Oracle实现类split函数的方
zhaoshijie
oracle
关键字:Oracle实现类split函数的方
项目里需要保存结构数据,批量传到后他进行保存,为了减小数据量,子集拼装的格式,使用存储过程进行保存。保存的过程中需要对数据解析。但是oracle没有Java中split类似的函数。从网上找了一个,也补全了一下。
CREATE OR REPLACE TYPE t_split_100 IS TABLE OF VARCHAR2(100);
cr