声明:此文章来源部分百度百科。
基本解法
第一步
以LSD为例,假设原来有一串数值如下所示:
73, 22, 93, 43, 55, 14, 28, 65, 39, 81
首先根据个位数的数值,在走访数值时将它们分配至编号0到9的桶子中:
0
1 81
2 22
3 73 93 43
4 14
5 55 65
6
7
8 28
9 39
第二步
接下来将这些桶子中的数值重新串接起来,成为以下的数列:
81, 22, 73, 93, 43, 14, 55, 65, 28, 39
接着再进行一次分配,这次是根据十位数来分配:
0
1 14
2 22 28
3 39
4 43
5 55
6 65
7 73
8 81
9 93
第三步
接下来将这些桶子中的数值重新串接起来,成为以下的数列:
14, 22, 28, 39, 43, 55, 65, 73, 81, 93
这时候整个数列已经排序完毕;如果排序的对象有三位数以上,则持续进行以上的动作直至最高位数为止。
LSD的基数排序适用于位数小的数列,如果位数多的话,使用MSD的效率会比较好。MSD的方式与LSD相反,是由高位数为基底开始进行分配,但在分配之后并不马上合并回一个 数组中,而是在每个“桶子”中建立“子桶”,将每个桶子中的数值按照下一数位的值分配到“子桶”中。在进行完最低位数的分配后再合并回单一的 数组中。
效率分析
时间效率
[1] :设待排序列为n个记录,d个关键码,关键码的取值范围为radix,则进行链式基数排序的 时间复杂度为O(d(n+radix)),其中,一趟分配时间复杂度为O(n),一趟收集时间复杂度为O(radix),共进行d趟分配和收集。 空间效率:需要2*radix个指向队列的辅助空间,以及用于 静态链表的n个 指针。
实现方法
最高位优先(Most Significant Digit first)法,简称MSD法:先按k1排序分组,同一组中记录,关键码k1相等,再对各组按k2排序分成子组,之后,对后面的关键码继续这样的排序分组,直到按最次位关键码kd对各子组排序后。再将各组连接起来,便得到一个有序序列。
最低位优先(Least Significant Digit first)法,简称LSD法:先从kd开始排序,再对kd-1进行排序,依次重复,直到对k1排序后便得到一个有序序列。
实现原理
基数排序的发明可以追溯到1887年赫尔曼·何乐礼在打孔卡片制表机(Tabulation Machine)上的贡献。它是这样实现的:将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后, 数列就变成一个有序序列。
基数排序的方式可以采用LSD(Least significant digital)或MSD(Most significant digital),LSD的排序方式由键值的最右边开始,而MSD则相反,由键值的最左边开始。
java实现代码:
public class RadixSort {
// 获取x这个数的d位数上的数字
// 比如获取123的1位数,结果返回3
public int getDigit(int x, int d) {
int a[] = { 1, 1, 10, 100 }; // 本实例中的最大数是百位数,所以只要到100就可以了
return ((x / a[d]) % 10);
}
public void radixSort(int[] list, int begin, int end, int digit) {
final int radix = 10; // 基数
int i = 0, j = 0;
int[] count = new int[radix]; // 存放各个桶的数据统计个数
int[] bucket = new int[end - begin + 1];
// 按照从低位到高位的顺序执行排序过程
for (int d = 1; d <= digit; d++) {
// 置空各个桶的数据统计
for (i = 0; i < radix; i++) {
count[i] = 0;
}
// 统计各个桶将要装入的数据个数
for (i = begin; i <= end; i++) {
j = getDigit(list[i], d);
count[j]++;
}
// count[i]表示第i个桶的右边界索引
for (i = 1; i < radix; i++) {
count[i] = count[i] + count[i - 1];
}
// 将数据依次装入桶中
// 这里要从右向左扫描,保证排序稳定性
for (i = end; i >= begin; i--) {
j = getDigit(list[i], d); // 求出关键码的第k位的数字, 例如:576的第3位是5
bucket[count[j] - 1] = list[i]; //放入对应的桶中,count[j]-1是第j个桶的右边界索引
count[j]--; // 对应桶的装入数据索引减一
}
// 将已分配好的桶中数据再倒出来,此时已是对应当前位数有序的表
for (i = begin, j = 0; i <= end; i++, j++) {
list[i] = bucket[j];
}
}
}
public int[] sort(int[] list) {
radixSort(list, 0, list.length - 1, 3);
return list;
}
// 打印完整序列
public void printAll(int[] list) {
for (int value : list) {
System.out.print(value + "\t");
}
System.out.println();
}
public static void main(String[] args) {
int[] array = { 50, 123, 543, 187, 49, 30, 0, 2, 11, 100 };
RadixSort radix = new RadixSort();
System.out.print("排序前:\t\t");
radix.printAll(array);
radix.sort(array);
System.out.print("排序后:\t\t");
radix.printAll(array);
}
}
C实现代码:
基数排序:首先分配10个桶,桶的编号为零到九。按照最低位的有效数字插入到相应的桶中。然后按照次低位插入到相应的桶中。
#include<iostream>
#include<iomanip>
#include<bits/stdc++.h>
using namespace std;
//获取最大位数
int get_max_digit(int array[], int n)
{
int digit, max;
digit = 0;
max = array[0];
for (int i = 1; i < n; i++)
{
if (array[i] > max)
max = array[i];
}
while (max)
{
digit++;
max /= 10;
}
return digit;
}
//基数排序
void RadixSort(int array[], int n)
{
//创建临时数组
int *temp = new int[n];
//位数:决定了排序趟数
int digit = get_max_digit(array, n);
//计数数组
int count[10];
//排序
int r, i, d;
for (r = 1; r <= digit; r++)
{
//重置计数数组
memset(count, 0, 10 * sizeof(int));
//把数据存储到临时数组
memcpy(temp, array, n*sizeof(int));
d = i = 1;
while (i < r)
{
i++;
d *= 10;
}
for (i = 0; i < n; i++)
count[(array[i] / d) % 10]++;
for (i = 1; i < 10; i++)
count[i] += count[i - 1];
//数据回放
for (i = n - 1; i >= 0; i--)
array[--count[(temp[i] / d) % 10]] = temp[i];
}
}
void print(int array[], int n)
{
for (int i = 0; i < n; i++)
cout << setw(6) << array[i];
cout << endl;
}
int main()
{
cout << "******基数排序***by David***" << endl;
int array[] = { 123, 234, 45, 111, 6, 128 };
int n = sizeof(array) / sizeof(int);
cout << "原序列" << endl;
print(array, n);
cout << "基数排序" << endl;
RadixSort(array, n);
print(array, n);
return 0;
}