- BZOJ-2521: [Shoi2010]最小生成树(最小割)(本蒟蒻的BZOJ第401 AC撒花~)
AmadeusChan
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2521挺神奇的一个最小割模型,如果要使得该边一定在MST上,那么要保证该边连接的两个连通块之间不存在其他边权小于等于它的边,那么自然就最小割啦。代码:#include#include#includeusingnamespacestd;#definemaxn1010#definemaxv1010#
- 华为 HCIP-Datacom H12-821 题库 (1)
可惜已不在
HCIP华为网络
有需要题库的可以看主页置顶需要题库的加Q裙V群仅进行学习交流1.MSTP有不同的端口角色,对此说法不正确的是:A、MSTP中除边缘端口外,其他端口角色都参与MSTP的计算过程B、MSTP同一端口在不同的生成树实例中可以担任不同的角色。C、MSTP域边缘端口是指位于MST域的边缘并连接其它MST域或SST的端口D、Backup端口作为根端口的备份,提供了从指定桥到根的另一条可切换路径答案:D解析:在
- MSTP多实例生成树(华为)
期待未来的男孩
路由交换网络
目录MSTP简介定义目的MSTP基本概念MSTP的网络层次MST域(MSTRegion)MSTP报文MSTP报文格式MSTP拓扑计算优先级向量CIST的计算MSTI的计算MSTP快速收敛机制配置MSTP+VRRP组合组网示例配置思路操作步骤MSTP简介定义多生成树协议MSTP(MultipleSpanningTreeProtocol)是IEEE802.1s中定义的生成树协议,通过生成多个生成树,来
- LED恒流驱动芯片方案合集-主要应用于热门行业智能家居调光、RGB五路摄影灯补光灯、12V升压汽车车灯、调光电源模块、大功率舞台灯、太阳能灯带、应急灯、显示器背光等LED恒流驱动方案
远翔调光芯片^13828798872
智能家居汽车计算机外设能源科技
深圳市雅欣控制技术有限公司,在芯片行业深耕二十载。是Feeling和MST在深圳的一级代理商。致力于推广销售电源管理芯片、LED驱动芯片和霍尔开关系列产品,为您提供最优化的解决方案、最优质的产品及咨询服务。远翔各型号应用分类:降压芯片:FP6161,FP6188,FP6150B,FP6151。升压芯片:FP5139,FP5207,FP5217,FP6291,FP6293,FP6296,FP6298
- 简单の暑假总结——最小生成树
C2024XSC184
笔记
6.1最小生成树我们先来了解一下最小生成树的概念:我们定义无向连通图的最小生成树(MinimumSpanningTree,MST)为边权和最小的生成树(树也叫做生成树)。——OIWiki我们举一个例子:在这样一个带权无向图中,它的最小生成树如下图所示,其权值为141414我们有222种算法来解决这个问题6.2Prim算法Prim算法无论是本质上还是代码上都与Dijkstra高度类似,本质上还是一个
- 蓝桥杯:C++贪心算法、字符串函数、朴素模式匹配算法、KMP算法
DaveVV
蓝桥杯c++蓝桥杯c++贪心算法算法开发语言数据结构c语言
贪心算法贪心(Greedy)算法的原理很容易理解:把整个问题分解成多个步骤,在每个步骤都选取当前步骤的最优方案,直到所有步骤结束;每个步骤都不考虑对后续步骤的影响,在后续步骤中也不再回头改变前面的选择。贪心算法虽然简单,但它有广泛的应用。例如图论中的最小生成树(MinimalSpanningTree,MST)算法、单源最短路径算法(Dijkstra)都是贪心算法的典型应用。贪心算法的主要问题是不一
- P3141 [USACO16FEB] Fenced In P题解
smart_stupid
算法c++
题目如果此题数据要小一点,那么我们可以用克鲁斯卡尔算法通过,但是这个数据太大了,空间会爆炸,时间也会爆炸。我们发现,如果用MST做,那么很多边的边权都一样,我们可以整行整列地删除。我们造一个样例解析一下:+-+--+---+||||+-+--+---+||||||||+-+--+---+首先,我们删除第一列的栅栏:+-+--+---+||||++--+---+||||||||+-+--+---+此
- 最小生成树 —— Prim 和 Kruskal 算法
CharlesWu123
数据结构与算法数据结构与算法最小生成树PrimKruskal
最小生成树定义生成树:连通图包含全部顶点的一个极小连通子图最小生成树:对于带权无向连通图G=(V,E),G的所有生成树当中边的权值之和最小的生成树为G的最小生成树(MST)性质最小生成树不一定唯一,即最小生成树的树形不一定唯一。当带权无向连通图G的各边权值不等时或G只有节点数减1条边时,MST唯一最小生成树的权值是唯一的,且是唯一的最小生成树的边数为顶点数减1算法Prim算法适用于稠密图,Krus
- 最小生成树超详细介绍
何不遗憾呢
数据结构c语言
目录一.最小生成树的介绍1.最小生成树的简介2.最小生成树的应用3.最小生成树的得出方法二.Kruskal算法1.基本思想:2.步骤:3.实现细节:4.样例分析:5.Kruskal算法代码实现:三.Prim算法1.基本思想:2.步骤:3.实现细节:4.样例分析:5.Prim算法代码实现四.总结一.最小生成树的介绍1.最小生成树的简介最小生成树(MinimumSpanningTree,简称MST,在
- 数据结构与算法:图论(邻接表板子+BFS宽搜、DFS深搜+拓扑排序板子+最小生成树MST的Prim算法、Kruskal算法、Dijkstra算法)
鸡鸭扣
算法深度优先图论宽度优先图搜索java后端
前言图的难点主要在于图的表达形式非常多,即数据结构实现的形式很多。算法本身不是很难理解。所以建议精通一种数据结构后遇到相关题写个转换数据结构的接口,再套自己的板子。邻接表板子(图的定义和生成)publicclassGraph{publicHashMapnodes;//点集,第一个参数是点的编号。和Node类中的value一致。不一定是Integer类型的,要看具体的题,有的题点编号为字母。publ
- 并查集+巧妙分块,Codeforces1424B. 0-1 MST
EQUINOX1
OJ刷题解题报告算法动态规划c++数据结构图论
目录一、题目1、题目描述2、输入输出2.1输入2.2输出3、原题链接二、解题报告1、思路分析2、复杂度3、代码详解一、题目1、题目描述Ujanhasalotofuselessstuffinhisdrawers,aconsiderablepartofwhicharehismathnotebooks:itistimetosortthemout.Thistimehefoundanolddustygrap
- C#,最小生成树(MST)博鲁夫卡(Boruvka)算法的源代码
深度混淆
C#算法演义AlgorithmRecipesC#算法最小生成树Boruvka
OtakarBoruvka本文给出Boruvka算法的C#实现源代码。Boruvka算法用于查找边加权图的最小生成树(MST),它早于Prim和Kruskal的算法,但仍然可以被认为是两者的关联。一、Boruvka算法的历史1926年,奥塔卡·博鲁夫卡(OtakarBoruvka)首次提出了一种求给定图的MST的方法。这在计算机出现之前就已经存在了,事实上,它被用来设计一个高效的配电系统。Geor
- CF888G Xor-MST DFS 最小生成树 01Trie
BestMonkey
题解c++c语言算法
Xor-MST传送门题面翻译给定nnn个结点的无向完全图。每个点有一个点权为aia_iai。连接iii号结点和jjj号结点的边的边权为ai⊕aja_i\oplusa_jai⊕aj。求这个图的MST的权值。1≤n≤2×1051\len\le2\times10^51≤n≤2×105,0≤aiusingnamespacestd;#defineintlonglongconstintMaxn=6e6+5;i
- 关于xftp突然无法连接服务器或虚拟机,可以ping通自己的虚拟机ip地址
_无往而不胜_
Linux网络vmware服务器xftp无法连接SecureCRT
关于xftp突然无法连接服务器或虚拟机,ping自己的虚拟机ip地址可以ping通主机能ping通虚拟机(ubuntu)C:\Users\42216\Desktop>ping192.168.61.128正在Ping192.168.61.128具有32字节的数据:来自192.168.61.128的回复:字节=32时间<1msTTL=64来自192.168.61.128的回复:字节=32时间=1msT
- 图论-最小生成树(MST)算法
chenlly99
DataStructure_JAVA算法
最小生成树:E=V-1无权图的最小生成树不必关心边的长度,而是要找到最少数量的边。最小生成树于搜索算法几乎是相同的,同样可以给予深度优先搜索和广度优先搜索。DFS算法访问所有的顶点,但只访问一次,绝不会两次访问同一个顶点。当看到某条边将要到达一个已访问的顶点,它就不会走这条边。因此DFS算法走过整个图的路径必定是最小生成树。对dfs算法的改进,只是在else里面输出了当前顶点publicvoidm
- 最小生成树算法
WangLi&a
图论最小生成树KruskalPrimBoruvka
前言图的最小生成树(MST)是术语“最小权重生成树”的简称。通常所说的都是无向图的MST。一般来说有三种比较常见的最小生成树算法:克鲁斯卡尔算法(Kruskal)普利姆算法(Prim)博鲁夫卡算法(Boruvka)LCT求MST一般来说克鲁斯卡尔最短,所以只求MST的话,克鲁斯卡尔完全足够了。其时间复杂度分别为:克鲁斯卡尔:O(mlogm)O(m\logm)O(mlogm)普利姆:O(mlog
- 【algo&ds】8.最小生成树
「已注销」
1.最小生成树介绍什么是最小生成树?最小生成树(Minimumspanningtree,MST)是在一个给定的无向图G(V,E)中求一棵树T,使得这棵树拥有图G中的所有顶点,且所有边都是来自图G中的边,并且满足整棵树的边权值和最小。2.prim算法和Dijkstra算法很像!!请看如下Gif图,prim算法的核心思想是对图G(V,E)设置集合S,存放已被访问的顶点,然后每次从集合V-S中选择与集合
- ds图—最小生成树_MST (minimum spanning tree)最小生成树算法在三维点云的分割的应用...
weixin_39629989
ds图—最小生成树最小生成树算法matlab
一、概念准备MST最小生成树算法是一种图论的算法。连通图:无向图中,任意两个顶点都有路径相通。强连通图:有向图中,任意两个顶点都有路径相通。连通网:在连通图中,若图的边有权值;权代表着连接连个顶点的代价,称这种连通图叫做连通网。生成树:一个连通图的生成树是指一个连通子图,它含有图中全部n个顶点,但只有足以构成一棵树的n-1条边。一颗有n个顶点的生成树有且仅有n-1条边,如果生成树中再添加一条边,则
- Python贪心算法(Kruskal算法)生成对抗网络和强化学习数据集(计算机视觉)
亚图跨际
算法Python算法python贪心算法
最小生成树生成树被定义为包含图的所有顶点的连通无向图的树状子图。或者,用外行的话来说,它是形成一棵树(无环)的图的边的子集,其中图的每个节点都是树的一部分。最小生成树具有生成树的所有属性,并附加了在所有可能的生成树中具有最小可能权重的约束。与生成树一样,图也可以有许多可能的MST。生成树属性:图和生成树中的顶点数(V)相同生成树中有固定数量的边,该数量等于顶点总数减一(E=V-1)生成树不应断开连
- 龙迅LT8713SX适用于一路Type-C/DP1.4转三路Type-C/DP1.4/HDMI2.0应用方案,分辨率高达4K60HZ,支持SST/MST模式!
weixin_69065474
视频转换龙迅集成电路信号处理音视频5G计算机外设物联网
1.概述LT8713SX是一款高性能Type-C/DP1.4转Type-C/DP1.4/HDMI2.0转换器,具有三个可配置的DP1.4/HDMI2.0/DP++输出接口和音频输出接口。LT8713SX支持DisplayPort™单流传输(SST)模式和多流传输(MST)模式。当接收到通过单个DP链路打包和传输的多个视频/音频流时,LT8713SX会将打包的多流恢复到多个不同的视频/音频流。在SS
- 《网络设备配置与管理》综合训练,华为ensp测试,MSTP\VRRP\OSPF\RIP\BGP\路由引入
华为网络设计 Ensp
eNSP基础实验系列网络华为bgpospfrip路由引入vrrp
1.设备基础信息配置(1)根据表2IPv4地址分配表,修订所有设备名称。(2)根据公司网络规划,在所有交换机上创建VLAN10、VLAN20。为了保证不同交换机上的同一个VLAN的成员之间能够相互通信,需要配置交换机之间相连的端口为Trunk端口,并允许VLAN10、VLAN20通过。2.部署MSTP及VRRP技术,实现网络冗余。在交换机S1、S2、S3上配置MSTP防止二层环路。(1)配置MST
- 69内网安全-域横向CobaltStrike&SPN&RDP
上线之叁
安全
这节课主要讲spn和rdp协议,案例一域横向移动RDP传递-Mimikatzrdp是什么,rdp是一个远程的链接协议,在linux上面就是ssh协议,我们在前期信息收集的时候,得到一些hash值和明文密码可以进行一些相关协议的链接的,比如之前讲的ipc,vmi,smb协议,除了这些,rdp协议也是可以进行链接的,rdp协议对应的开放端口就是3389明文密码连接时很简单得可以直接xin+r输入mst
- 龙讯LONTIUM LT8712EXI 国产芯片
梅梅966
linux运维服务器
1.描述该LT8712EXI是一种高性能的类型-C/DP1.2HDMI2.0/VGA转换器,旨在连接一个USB类型C源或DP1.2源到一个VGA接收器,并高达两个HDMI2.0接收器同时。该LT8712EXI集成了一个DP1.2兼容接收器(MST能力),一个高速三通道视频DAC和两个HDMI2.0兼容发射器。此外,CC通信包括两个CC控制器,以实现DPAlt模式和电源交付功能,一个为上游的C型端口
- 第八章 图——补充
zbsnzj
javascript数据结构
8.6最小生成树最小生成树(MST)问题是网络设计中常见的问题。想象一下,你的公司有几间办公室,要以最低的成本实现办公室电话线路相互连通,以节省资金,最好的办法是什么?这也可以应用于岛桥问题。设想你要在n个岛屿之间建造桥梁,想用最低的成本实现所有岛屿相互连通。这两个问题都可以用MST算法来解决,其中的办公室或者岛屿可以表示为图中的一个顶点,边代表成本。这里我们有一个图的例子,其中较粗的边是一个MS
- U4_2:图论之MST/Prim/Kruskal
轩不丢
算法设计与分析图论算法
文章目录一、最小生成树-MST生成MST策略一些定义思路彩蛋二、普里姆算法(Prim算法)思路算法流程数据存储分析伪代码时间复杂度分析三、克鲁斯卡尔算法(Kruskal算法)分析算法流程并查集-Find-set伪代码时间复杂度分析一、最小生成树-MST无向图,无环,所有点连通,边权重和最小(没有权重标注就默认为1)生成MST策略从一个空图开始。尝试一次添加一条边,始终确保所构建的保持无循环。如果在
- 简单介绍一些其他的树
不想步入秃头的年龄
树javab树决策树霍夫曼树开发语言生活程序人生
目录N叉树(N-aryTree):B树(B-tree):B+树(B+Tree):AVL树(AVLTree):红黑树(Red-BlackTree):Trie树(TrieTree):树堆(Treap):最小生成树(MinimumSpanningTree,MST):区间树(IntervalTree):优缺点B与B+树B树(B-tree):优点:缺点:B+树(B+Tree):优点:缺点:AVL树(AVLT
- 最小生成树(Minimum Spanning Tree)及生成MST的几种方法
RRRRRoyal
算法
最小生成树(MinimumSpanningTree)最小生成树是图论领域的一个基本概念,适用于加权连通图,其中包括若干顶点(节点)以及连接这些顶点的边(边可以有权重)。在一个加权连通图中,生成树(SpanningTree)是一个无环子图,它包含图中的所有顶点,并且用最少数量的边将它们连接起来。注意,无环是指子图中不存在任何边的闭环,最少数量的边意味着任意两个顶点之间有且仅有一条路径相互到达。“最小
- Kruskal算法:寻找最小生成树的实现
后端架构小白
算法图论编程
Kruskal算法:寻找最小生成树的实现最小生成树(MinimumSpanningTree,简称MST)是一种在加权连通图中连接所有顶点并使得总权重最小的树形结构。Kruskal算法是一种常用的寻找最小生成树的算法之一。在本篇文章中,我们将详细介绍Kruskal算法的实现过程,并提供相应的C语言源代码。Kruskal算法的思想非常简单直观:首先将图中的所有边按照权重从小到大进行排序,然后逐个考虑这
- 生成树(基础)
莫忘、莫念
数据结构(王道)算法数据结构c++
目录一、生成树的相关概念二、最小生成树的相关概念(一)最小生成树的性质(MST性质)(二)MST性质解释三、Prim算法(普里姆算法)(一)动态演示(二)核心代码(三)完整代码(四)运行结果四、Kruskal(克鲁斯卡尔)算法(一)演示(二)关键代码(三)完整代码(四)结果一、生成树的相关概念生成树:所有顶点均由边连接在一起,但不存在回路的图。一个图可以有许多棵不同的生成树所有生成树具有以下共同特
- BZOJ-1977: [BeiJing2010组队]次小生成树 Tree(MST+树上倍增)
AmadeusChan
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1977有种很显然的做法:先MST,然后枚举每一条非树边(s,t),将s,t在MST上对应的路径上找出一条严格小于(s,t)权值且最大的边,然后把(s,t)替换进去,最终可以得到严格次小生成树。明显直接O(n^2)暴力会跪,瓶颈失求树上路径最大边,那么就用树上倍增(OrzCLJ神牛的类Tarjan
- 解线性方程组
qiuwanchi
package gaodai.matrix;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
public class Test {
public static void main(String[] args) {
Scanner scanner = new Sc
- 在mysql内部存储代码
annan211
性能mysql存储过程触发器
在mysql内部存储代码
在mysql内部存储代码,既有优点也有缺点,而且有人倡导有人反对。
先看优点:
1 她在服务器内部执行,离数据最近,另外在服务器上执行还可以节省带宽和网络延迟。
2 这是一种代码重用。可以方便的统一业务规则,保证某些行为的一致性,所以也可以提供一定的安全性。
3 可以简化代码的维护和版本更新。
4 可以帮助提升安全,比如提供更细
- Android使用Asynchronous Http Client完成登录保存cookie的问题
hotsunshine
android
Asynchronous Http Client是android中非常好的异步请求工具
除了异步之外还有很多封装比如json的处理,cookie的处理
引用
Persistent Cookie Storage with PersistentCookieStore
This library also includes a PersistentCookieStore whi
- java面试题
Array_06
java面试
java面试题
第一,谈谈final, finally, finalize的区别。
final-修饰符(关键字)如果一个类被声明为final,意味着它不能再派生出新的子类,不能作为父类被继承。因此一个类不能既被声明为 abstract的,又被声明为final的。将变量或方法声明为final,可以保证它们在使用中不被改变。被声明为final的变量必须在声明时给定初值,而在以后的引用中只能
- 网站加速
oloz
网站加速
前序:本人菜鸟,此文研究总结来源于互联网上的资料,大牛请勿喷!本人虚心学习,多指教.
1、减小网页体积的大小,尽量采用div+css模式,尽量避免复杂的页面结构,能简约就简约。
2、采用Gzip对网页进行压缩;
GZIP最早由Jean-loup Gailly和Mark Adler创建,用于UNⅨ系统的文件压缩。我们在Linux中经常会用到后缀为.gz
- 正确书写单例模式
随意而生
java 设计模式 单例
单例模式算是设计模式中最容易理解,也是最容易手写代码的模式了吧。但是其中的坑却不少,所以也常作为面试题来考。本文主要对几种单例写法的整理,并分析其优缺点。很多都是一些老生常谈的问题,但如果你不知道如何创建一个线程安全的单例,不知道什么是双检锁,那这篇文章可能会帮助到你。
懒汉式,线程不安全
当被问到要实现一个单例模式时,很多人的第一反应是写出如下的代码,包括教科书上也是这样
- 单例模式
香水浓
java
懒汉 调用getInstance方法时实例化
public class Singleton {
private static Singleton instance;
private Singleton() {}
public static synchronized Singleton getInstance() {
if(null == ins
- 安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
AdyZhang
apachehttp server
安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
每次到这一步都很小心防它的端口冲突问题,结果,特意留出来的80端口就是不能用,烦。
解决方法确保几处:
1、停止IIS启动
2、把端口80改成其它 (譬如90,800,,,什么数字都好)
3、防火墙(关掉试试)
在运行处输入 cmd 回车,转到apa
- 如何在android 文件选择器中选择多个图片或者视频?
aijuans
android
我的android app有这样的需求,在进行照片和视频上传的时候,需要一次性的从照片/视频库选择多条进行上传
但是android原生态的sdk中,只能一个一个的进行选择和上传。
我想知道是否有其他的android上传库可以解决这个问题,提供一个多选的功能,可以使checkbox之类的,一次选择多个 处理方法
官方的图片选择器(但是不支持所有版本的androi,只支持API Level
- mysql中查询生日提醒的日期相关的sql
baalwolf
mysql
SELECT sysid,user_name,birthday,listid,userhead_50,CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')),CURDATE(), dayofyear( CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')))-dayofyear(
- MongoDB索引文件破坏后导致查询错误的问题
BigBird2012
mongodb
问题描述:
MongoDB在非正常情况下关闭时,可能会导致索引文件破坏,造成数据在更新时没有反映到索引上。
解决方案:
使用脚本,重建MongoDB所有表的索引。
var names = db.getCollectionNames();
for( var i in names ){
var name = names[i];
print(name);
- Javascript Promise
bijian1013
JavaScriptPromise
Parse JavaScript SDK现在提供了支持大多数异步方法的兼容jquery的Promises模式,那么这意味着什么呢,读完下文你就了解了。
一.认识Promises
“Promises”代表着在javascript程序里下一个伟大的范式,但是理解他们为什么如此伟大不是件简
- [Zookeeper学习笔记九]Zookeeper源代码分析之Zookeeper构造过程
bit1129
zookeeper
Zookeeper重载了几个构造函数,其中构造者可以提供参数最多,可定制性最多的构造函数是
public ZooKeeper(String connectString, int sessionTimeout, Watcher watcher, long sessionId, byte[] sessionPasswd, boolea
- 【Java命令三】jstack
bit1129
jstack
jstack是用于获得当前运行的Java程序所有的线程的运行情况(thread dump),不同于jmap用于获得memory dump
[hadoop@hadoop sbin]$ jstack
Usage:
jstack [-l] <pid>
(to connect to running process)
jstack -F
- jboss 5.1启停脚本 动静分离部署
ronin47
以前启动jboss,往各种xml配置文件,现只要运行一句脚本即可。start nohup sh /**/run.sh -c servicename -b ip -g clustername -u broatcast jboss.messaging.ServerPeerID=int -Djboss.service.binding.set=p
- UI之如何打磨设计能力?
brotherlamp
UIui教程ui自学ui资料ui视频
在越来越拥挤的初创企业世界里,视觉设计的重要性往往可以与杀手级用户体验比肩。在许多情况下,尤其对于 Web 初创企业而言,这两者都是不可或缺的。前不久我们在《右脑革命:别学编程了,学艺术吧》中也曾发出过重视设计的呼吁。如何才能提高初创企业的设计能力呢?以下是 9 位创始人的体会。
1.找到自己的方式
如果你是设计师,要想提高技能可以去设计博客和展示好设计的网站如D-lists或
- 三色旗算法
bylijinnan
java算法
import java.util.Arrays;
/**
问题:
假设有一条绳子,上面有红、白、蓝三种颜色的旗子,起初绳子上的旗子颜色并没有顺序,
您希望将之分类,并排列为蓝、白、红的顺序,要如何移动次数才会最少,注意您只能在绳
子上进行这个动作,而且一次只能调换两个旗子。
网上的解法大多类似:
在一条绳子上移动,在程式中也就意味只能使用一个阵列,而不使用其它的阵列来
- 警告:No configuration found for the specified action: \'s
chiangfai
configuration
1.index.jsp页面form标签未指定namespace属性。
<!--index.jsp代码-->
<%@taglib prefix="s" uri="/struts-tags"%>
...
<s:form action="submit" method="post"&g
- redis -- hash_max_zipmap_entries设置过大有问题
chenchao051
redishash
使用redis时为了使用hash追求更高的内存使用率,我们一般都用hash结构,并且有时候会把hash_max_zipmap_entries这个值设置的很大,很多资料也推荐设置到1000,默认设置为了512,但是这里有个坑
#define ZIPMAP_BIGLEN 254
#define ZIPMAP_END 255
/* Return th
- select into outfile access deny问题
daizj
mysqltxt导出数据到文件
本文转自:http://hatemysql.com/2010/06/29/select-into-outfile-access-deny%E9%97%AE%E9%A2%98/
为应用建立了rnd的帐号,专门为他们查询线上数据库用的,当然,只有他们上了生产网络以后才能连上数据库,安全方面我们还是很注意的,呵呵。
授权的语句如下:
grant select on armory.* to rn
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('This example should only be run from a Web Brows
- 美国电影超短200句
dcj3sjt126com
电影
1. I see. 我明白了。2. I quit! 我不干了!3. Let go! 放手!4. Me too. 我也是。5. My god! 天哪!6. No way! 不行!7. Come on. 来吧(赶快)8. Hold on. 等一等。9. I agree。 我同意。10. Not bad. 还不错。11. Not yet. 还没。12. See you. 再见。13. Shut up!
- Java访问远程服务
dyy_gusi
httpclientwebservicegetpost
随着webService的崛起,我们开始中会越来越多的使用到访问远程webService服务。当然对于不同的webService框架一般都有自己的client包供使用,但是如果使用webService框架自己的client包,那么必然需要在自己的代码中引入它的包,如果同时调运了多个不同框架的webService,那么就需要同时引入多个不同的clien
- Maven的settings.xml配置
geeksun
settings.xml
settings.xml是Maven的配置文件,下面解释一下其中的配置含义:
settings.xml存在于两个地方:
1.安装的地方:$M2_HOME/conf/settings.xml
2.用户的目录:${user.home}/.m2/settings.xml
前者又被叫做全局配置,后者被称为用户配置。如果两者都存在,它们的内容将被合并,并且用户范围的settings.xml优先。
- ubuntu的init与系统服务设置
hongtoushizi
ubuntu
转载自:
http://iysm.net/?p=178 init
Init是位于/sbin/init的一个程序,它是在linux下,在系统启动过程中,初始化所有的设备驱动程序和数据结构等之后,由内核启动的一个用户级程序,并由此init程序进而完成系统的启动过程。
ubuntu与传统的linux略有不同,使用upstart完成系统的启动,但表面上仍维持init程序的形式。
运行
- 跟我学Nginx+Lua开发目录贴
jinnianshilongnian
nginxlua
使用Nginx+Lua开发近一年的时间,学习和实践了一些Nginx+Lua开发的架构,为了让更多人使用Nginx+Lua架构开发,利用春节期间总结了一份基本的学习教程,希望对大家有用。也欢迎谈探讨学习一些经验。
目录
第一章 安装Nginx+Lua开发环境
第二章 Nginx+Lua开发入门
第三章 Redis/SSDB+Twemproxy安装与使用
第四章 L
- php位运算符注意事项
home198979
位运算PHP&
$a = $b = $c = 0;
$a & $b = 1;
$b | $c = 1
问a,b,c最终为多少?
当看到这题时,我犯了一个低级错误,误 以为位运算符会改变变量的值。所以得出结果是1 1 0
但是位运算符是不会改变变量的值的,例如:
$a=1;$b=2;
$a&$b;
这样a,b的值不会有任何改变
- Linux shell数组建立和使用技巧
pda158
linux
1.数组定义 [chengmo@centos5 ~]$ a=(1 2 3 4 5) [chengmo@centos5 ~]$ echo $a 1 一对括号表示是数组,数组元素用“空格”符号分割开。
2.数组读取与赋值 得到长度: [chengmo@centos5 ~]$ echo ${#a[@]} 5 用${#数组名[@或
- hotspot源码(JDK7)
ol_beta
javaHotSpotjvm
源码结构图,方便理解:
├─agent Serviceab
- Oracle基本事务和ForAll执行批量DML练习
vipbooks
oraclesql
基本事务的使用:
从账户一的余额中转100到账户二的余额中去,如果账户二不存在或账户一中的余额不足100则整笔交易回滚
select * from account;
-- 创建一张账户表
create table account(
-- 账户ID
id number(3) not null,
-- 账户名称
nam