由于时间问题有些问题没有写的很仔细,而且估计这里会存在不少不恰当之处。另,思考题2-3关于霍纳规则,有些部分没有完成,故没把解答写上去,我对其c问题有疑问,请有解答方法者提供个意见。
给出的代码目前也仅仅为解决问题,没有做优化,请见谅,等有时间了我再好好修改。
插入排序算法伪代码
INSERTION-SORT(A)
1 for j←2 to length[A]
2 do key←A[j]
3 //Insert A[j] into the sorted sequence A[1..j-1]
4 i←j-1
5 while i>0 and A[i]>key
6 do A[i+1] ← A[i]
7 i←i-1
8 A[i+1] ← key
C#对插入排序算法的实现:
public static void InsertionSort<T>(T[] Input) where T:IComparable<T>
{
T key;
int i;
for (int j = 1; j < Input.Length; j++)
{
key = Input[j];
i = j - 1;
for (; i >= 0 && Input[i].CompareTo(key)>0;i-- )
Input[i + 1] = Input[i];
Input[i+1]=key;
}
}
插入算法的设计使用的是增量(incremental)方法:在排好子数组A[1..j-1]后,将元素A[j]插入,形成排好序的子数组A[1..j]
这里需要注意的是由于大部分编程语言的数组都是从0开始算起,这个与伪代码认为的数组的数是第1个有所不同,一般要注意有几个关键值要比伪代码的小1.
如果按照大部分计算机编程语言的思路,修改为:
INSERTION-SORT(A)
1 for j←1 to length[A]
2 do key←A[j]
3 i←j-1
4 while i>=0 and A[i]>key
5 do A[i+1] ← A[i]
6 i←i-1
7 A[i+1] ← key
循环不变式(Loop Invariant)是证明算法正确性的一个重要工具。对于循环不变式,必须证明它的三个性质:
初始化(Initialization):它在循环的第一轮迭代开始之前,应该是正确的。
保持(Maintenance):如果在循环的某一次迭代开始之前它是正确的,那么,在下一次迭代开始之前,它也是正确的。
终止(Termination):当循环结束时,不变式给了我们一个有用的性质,它有助于表明算法是正确的。
运用循环不变式对插入排序算法的正确性进行证明:
初始化:j=2,子数组A[1..j-1]只包含一个元素A[1],显然它是已排序的。
保持:若A[1..j-1]是已排序的,则按照大小确定了插入元素A[j]位置之后的数组A[1..j]显然也是已排序的。
终止:当j=n+1时,退出循环,此时已排序的数组是由A[1],A[2],A[3]…A[n]组成的A[1..n],此即原始数组A。
练习
2.1-1:以图2-2为模型,说明INSERTION-SORT在数组A=<31,41,59,26,41,58>上的执行过程。
31 |
41 |
59 |
26 |
41 |
58 |
31 |
41 |
59 |
26 |
41 |
58 |
31 |
41 |
59 |
26 |
41 |
58 |
26 |
31 |
41 |
59 |
41 |
58 |
26 |
31 |
41 |
41 |
59 |
58 |
26 |
31 |
41 |
41 |
58 |
59 |
2.1-2:重写过程INSERTION-SORT,使之按非升序(而不是按非降序)排序。
INSERTION-SORT(A)
1 for j←2 to length[A]
2 do key←A[j]
3 //Insert A[j] into the sorted sequence A[1..j-1]
4 i←j-1
5 while and A[i]<key
6 do A[i+1] ← A[i]
7 i←i-1
7 A[i+1] ← key
2.1-3:考虑下面的查找问题:
输入:一列数A=<a1,a2,…,an >和一个值v
输出:下标i,使得v=A[i],或者当v不在A中出现时为NIL。
写出针对这个问题的现行查找的伪代码,它顺序地扫描整个序列以查找v。利用循环不变式证明算法的正确性。确保所给出的循环不变式满足三个必要的性质。
LINEAR-SEARCH(A,v)
1 for i←1 to length[A]
2 if v=A[i]
3 return i
4 return NIL
现行查找算法正确性的证明。
初始化: i=1,子数组为A[1..i],只有一个元素A[1],如果v=A[1]就返回1,否则返回NIL,算法显然是正确的。
保持:若算法对数组A[1..i]正确,则在数组增加一个元素A[i+1]时,只需要多作一次比较,因此显然对A[1..i+1]也正确。
终止:算法如果在非最坏情况下定能返回一个值此时查找成功,如果n次查找(遍历了所有的数)都没有成功,则返回NIL。算法在有限次查找后肯定能够给出一个返回值,要么说明查找成功并给出下标,要么说明无此值。因此算法正确。
该算法用C#实现的代码:
public static int LinearSearch<T>(T[] Input, T v) where T:IComparable<T>
{
for (int i = 0; i < Input.Length;i++ )
if (Input[i].Equals(v))
return i;
return -1;
}
2.1-4:有两个各存放在数组A和B中的n位二进制整数,考虑它们的相加问题。两个整数的和以二进制形式存放在具有(n+1)个元素的数组C中。请给出这个问题的形式化描述,并写出伪代码。
A存放了一个二进制n位整数的各位数值,B存放了另一个同样是二进制n位整数的各位上的数值,现在通过二进制的加法对这两个数进行计算,结果以二进制形式把各位上的数值存放在数组C(n+1位)中。
BINARY-ADD(A,B,C)
1 flag← 0
2 for j←1 to n
3 do key←A[j]+B[j]+flag
4 C[j] ← key mod 2
5 if key←1
6 flag←1
7 if flag=1
8 C[n+1] ← 1
1.RAM(Random-Access Machine)模型分析通常能够很好地预测实际计算机上的性能,RAM计算模型中,指令一条接一条地执行,没有并发操作。RAM模型中包含了真实计算机中常见的指令:算术指令(加法、剑法、乘法、出发、取余、向下取整、向上取整指令)、数据移动指令(装入、存储、复制指令)和控制指令(条件和非条件转移、子程序调用和返回指令)。其中每天指令所需时间都为常量。
RAM模型中的数据类型有整数类型和浮点实数类型。
2.算法的运行时间是指在特定输入时,所执行的基本操作数(或步数)。
插入算法的分析比较简单,但是不是很有用,所以略过。(在解思考题2-1时有具体的实例分析,请参看)
3.一般考察算法的最坏情况运行时间。这样做的理由有三点:
A.一个算法的最坏情况运行时间是在任何输入下运行时间的一个上界。
B.对于某些算法,最坏情况出现的是相当频繁的。
C.大致上来看,“平均情况“通常与最坏情况一样差。
4.如果一个算法的最坏情况运行时间要比另一个算法的低,我们常常就认为它的效率更高。
练习
2.2-1:用Θ形式表示表示函数 /1000- -100n+3
Θ(n^3)
2.2-2:考虑对数组A中的n个数进行排序的问题:首先找出A中的最小元素,并将其与A[1]中的元素进行交换。接着,找出A中的次最小元素,并将其与A[2]中的元素进行交换。对A中头n-1个元素继续这一过程。写出这个算法的伪代码,该算法称为选择排序(selection sort)。对这个算法来说,循环不变式是什么?为什么它仅需要在头n-1个元素上运行,而不是在所有n个元素上运行?以 形式写出选择排序的最佳和最坏情况下的运行时间。
假设函数MIN(A,i,n)从子数组A[i..n]中找出最小值并返回最小值的下标。
SELECTION-SORT(A)
1 for i←1 to n-1
2 j←MIN(A,i,n)
3 exchange A[i]←→ A[j]
选择排序算法正确性的证明
初始化:i=1,从子数组A[1..n]里找到最小值A[j],并与A[i]互换,此时子数组A[1..i]只有一个元素A[1],显然是已排序的。
保持:若A[1..i]是已排序子数组。这里显然A[1] A[2] A[3] … A[i],而A[i+1..n]里最小值也必大于A[i],找出此最小值与A[i+1]互换并将A[i+1]插入A[1..i]得到子数组A[1..i+1]。A[1..i+1]显然也是已排序的。
终止:当i=n时终止,此时已得到已排序数组A[1..n-1],而A[n]是经过n-1次比较后剩下的元素,因此A[n]大于A[1..n-1]中任意元素,故数组A[1..n]也即是原数组此时已是已排序的。所以,算法正确。
仅需要在头n-1个元素上运行是因为经过n-1次比较后剩下的是最大元素,其理应排在最后一个位置上,因此可以不必对此元素进行交换位置操作。
由于MIN()函数和SWAP()函数对于任意情况运行时间都相等,故这里最佳和最坏情况下运行时间是一样的。 Θ(n^2)
选择算法的的C#实现:
private static int Min<T>(T[] Input,int start,int end) where T:IComparable<T>
{
int flag=start;
for (int i = start; i < end; i++)
if (Input[flag].CompareTo(Input[i]) > 0)
flag = i;
return flag;
}
private static void Swap<T>(ref T a,ref T b) where T : IComparable<T>
{
T temp;
temp = a;
a = b;
b = temp;
}
public static T[] SelectionSort<T>(T[] Input) where T:IComparable<T>
{
for (int i = 0; i < Input.Length - 1; i++)
Swap(ref Input[Min(Input, i, Input.Length)],ref Input[i]);
return Input;
}
2.2-3:再次考虑线性查找问题(见练习2.1-3)。在平均情况下,需要检查输入序列中的多少个元素?假定查找的元素是数组中任何一个元素的可能性都是相等的。在最坏情况下又怎么样呢?用Θ相似表示的话,线性查找的平均情况和最坏情况运行时间怎么样?对你的答案加以说明。
平均:n/2次。因为任意一个元素大于、小于查找数的概率一样。
最坏:n次。最后一个元素才是要查找的元素。
用Θ表示都是:Θ(n)
2.2-4:应如何修改一个算法,才能使之具有较好的最佳情况运行时间?
要使算法具有较好的最佳情况运行时间就一定要对输入进行控制,使之偏向能够使得算法具有最佳运行情况的排列。
5.分治法(divide-and-conquer):有很多算法在结构上是递归的:为了解决一个给定的问题,算法要一次或多次地递归调用其自身来解决相关的问题。这些算法通常采用分治策略:将原问题划分成n个规模较小而结构与原问题相似的子问题;递归地解决这些子问题,然后再合并其结果,就得到原问题的解。
容易确定运行时间,是分治算法的有点之一。
6.分治模式在每一层递归上都有三个步骤:
分解(Divide):将原问题分解成一系列子问题;
解决(Conquer):递归地解各子问题。若子问题足够小,则直接求解;
合并(Combine):将子问题的结果合并成原问题的解。
7.合并排序(Merge Sort)算法完全依照了分治模式。
分解:将n个元素分成各含n/2个元素的子序列;
解决:用合并排序法对两个子序列递归地排序;
合并:合并两个已排序的子序列以得到排序结果。
在对子序列排序时,其长度为1时递归结束。单个元素被视为是已排好序的。
合并排序的关键步骤在于合并步骤中的合并两个已排序子序列。为做合并,引入一个辅助过程MERGE(A,p,q,r),其中A是个数组,p、q和r是下标,满足 。该过程假设子数组A[p..q]和A[q+1..r]都已排好序,并将他们合并成一个已排好序的子数组代替当前子数组A[p..r]。
MERGE过程的时间代价为Θ(n),其中n=r-p+1是待合并的元素个数。
MERGE过程:
MERGE(A,p,q,r)
1 n1←q-p+n
2 n2←r-p
3 //create arrays L[1..n1+1] and R[1..n2+1]
4 for i←1 to n1
5 do L[i] ← A[p+i-1]
6 for j←1 to n2
7 do R[j] ← A[q+j]
8 L[ ] ←无穷
9 R[ ] ←无穷
10 i←1
11 j←1
12 for k←p to r
13 do if L[i]<= R[j]
14 then A[k] ← L[i]
15 i←i+1
16 else A[k] ← R[j]
17 j←j+1
MERGE过程正确性的证明
初始化:第一轮循环,k=p,i=1,j=1,已排序数组L、R,比较两数组中最小元素L[i]、R[j],取较小的置于A[p],此时子数组A[p..p]不仅是已排序的(仅有一个元素),而且是所有待排序元素中最小的。若最小元素是L[i],取i=i+1,即i指向L中未排入A的所有元素中最小的一个;同理,j之于R数组也是如此。
保持:若A[p..k]是已排序的,由计算方法知,L中i所指、R中j所指及其后任意元素均大于等于A[p..k]中最大元素A[k],当k=k+1,A[k+1]中存入的是L[i]、R[j]中较小的一个,但是仍有A[k] <= A[k+1],而此时,子数组A[p..k+1]也必是有序的,i、j仍是分别指向L、R中未排入A的所有元素中最小的一个。
终止: k=r+1时终止跳出循环,此时,A[p..r]是已排序的,且显有A[p] A[p+1] .. A[r]。此即原待排序子数组,故算法正确。
MERGE-SORT(A,p,r)
1 if p<r
2 then q← [(p+r)/2]
3 MERGE-SORT(A,p,r)
4 MERGE-SORT(A,q+1,r)
5 MERGE-SORT(A,p,q,r)
算法与二叉树的后序遍历算法(先左子树,然后右子树,最后根)相似。
(第三行、第四行顺序可以互换)
合并排序算法的C#实现代码:
public static void MergeSort<T>(T[] Input,int p,int r) where T:IComparable<T>
{
int q;
if (p < r)
{
q = (p + r) / 2;
MergeSort(Input, p, q);
MergeSort(Input, q + 1, r);
Merge(Input,p,q,r);
}
}
private static void Merge<T>(T[] Input,int p,int q,int r) where T:IComparable<T>
{
int n1 = q - p + 1;
int n2 = r - q;
T[] L = new T[n1];
T[] R = new T[n2];
for (int i = 0; i < n1; i++)
L[i] = Input[p + i];
for (int j = 0; j < n2; j++)
R[j] = Input[q + 1 + j];
for (int i = 0, j = 0, k = p; k <= r; k++)
{
if(i<n1&&j<n2)
if (L[i].CompareTo(R[j]) < 0||L[i].Equals(R[j]))
{
Input[k] = L[i];
++i;
continue;
}
else
{
Input[k] = R[j];
++j;
continue;
}
if (i >= n1 && j < n2)
{
Input[k] = R[j];
++j;
continue;
}
if (i < n1 && j >= n2)
{
Input[k] = L[i];
++i;
continue;
}
}
}
8.当一个算法中含有对其自身的递归调用时,其运行时间可以用一个递归方程(或递归式)来表示。
合并算法的递归式:
n<=c时,T(n)=Θ(1),否则T(n)=aT(n/b)+D(n)+C(n)
D(n)是分解该问题所用时间,C(n)是合并解的时间;对于合并排序算法,a和b都是2
T(n)在最坏的情况下合并排序n个数的运行时间分析:
当n>1时,将运行时间如下分解:
分解:这一步仅仅算出子数组的中间位置,需要常量时间,因而D(n)=Θ(1)
解决:递归地解为两个规模为n/2的子问题,时间为T(n/2)
合并:含有n个元素的子数组上,MERGE过程的运行时间为C(n) =Θ(n)
n=1时,T(n)=Θ(1),n>1时T(n)=2T(n/2)+ Θ(n)
将上式改写:
n=1时,T(n)=c,n>1时T(n)=2T(n/2)+ cn
在所构造的递归树中,顶层总代价为cn(n个点的集合)。往下每层总代价不变,第i层的任一节点代价为c(n/2^i)(共2^i个节点总代价仍然是cn)。最底层有n个节点(n*1),每个点代价为c。此树共有lgn+1层,深度为lgn。
因此n层的总代价为:cn*(lgn+1)=cnlgn+cn=Θ(nlgn)
练习
2.3-1:2-4为模型,说明合并排序在输入数组A=<3,41,52,26,38,57,9,49>上的执行过程。
以文字代替图示
1.(3)(41)→(3,41);(52)(26) →(26,52);(38)(57) →(38,57);(9)(49) →(9,49)
2.(3,41)(26,52) →(3,26,41,52);(38,57)(9,49) →(9,38,49,57)
3.(3,26,41,52)(9,38,49,57) →(3,9,26,38,41,49,52,57)
2.3-2:MERGE过程,使之不适用哨兵元素,而是在一旦数组L或R中的所有元素都被复制回数组A后,就立即停止,再将另一个数组中余下的元素复制回数组A中
MERGE(A,p,q,r)
1 n1←q-p+n
2 n2←r-p
3 //create arrays L[1..n1] and R[1..n2]
4 for i←1 to n1
5 do L[i] ←A[p+i-1]
6 for j←1 to n2
7 do R[j] ← A[q+j]
8 i←1
9 j←1
10 for k←p to r
11 do if i<n1 and j<n2
12 if L[i]<= R[j]
13 A[k] ← L[i]
14 i←i+1
15 continue
16 else A[k] ← R[j]
17 j←j+1
18 continue
19 do if i>=n1 and j<n2
20 A[k] ← R[j]
21 j←j+1
22 continue
23 do if i<n1 and j>n2
24 A[k] ← L[i]
25 i←i+1
26 continue
2.3-3:利用数学归纳法证明:当n是2的整数次幂时,递归式
这个公式比较难贴上来,请大家看PDF。
2.3-4:插入排序可以如下改写成一个递归过程:为排序A[1..n],先递归地排序A[1..n-1],然后再将A[n]插入到已排序的数组A[1..n-1]中去。对于插入排序的这一递归版本,为它的运行时间写一个递归式。
首先是INSERTION过程
INSERTION (A,p,r)
1 for j←p to r
2 do key←A[j]
3 i←j-1
4 while i>0 and A[i]>key
5 do A[i+1] ← A[i]
6 i←i-1
7 A[i+1] ← key
插入排序的递归调用算法:
RECURSION-INSERTION-SORT(A,p,r)
1 if p<r
2 r←r-1
3 RECURSION-INSERTION-SORT(A,p,r)
4 INSERTION(A,p,r)
该算法的C#实现代码:
public static void RecursionInsertionSort<T>(T[] Input,int p,int r) where T:IComparable<T>
{
if (p < r)
{
--r;
RecursionInsertionSort(Input, p, r);
Insertion(Input,p,r);
}
}
private static void Insertion<T>(T[] Input, int p, int r) where T : IComparable<T>
{
T key;
int i;
for (int j = 1; j < r; j++)
{
key = Input[j];
i = j - 1;
for (; i >= 0 && Input[i].CompareTo(key) > 0; i--)
Input[i + 1] = Input[i];
Input[i + 1] = key;
}
}
n<=C时,T(n)=Θ(1),否则T(n)=(n-1)/n*T(n-1)+ Θ(n^2)
2.3-5:回顾一下练习2.1-3中提出的查找问题,注意如果序列A是已排序的,就可以将该序列的中点与v进行比较。根据比较的结果,原序列中有一半就可以不用再做进一步的考虑了。二分查找(binary search)就是一个不断重复这一查找过程的算法,它每次都将序列余下的部分分成两半,并只对其中的一半做进一步的查找。写出二分查找算法的伪代码,可以是迭代的,也可以是递归的。说明二分查找的最坏情况运行时间为什么是Θ(lgn)。
使用递归,先确定一个过程BINARY(A,p,r,v)
BINARY(A,p,r,v)
1 for j← p to r
2 if A[j]=v
3 return j
4 return NIL
然后是二分查找的递归过程
BINARY-SEARCH(A,p,r,v)
1 if p=0 and r=0 and A[0]=v
2 return 0
3 if p<r
4 q←[(p+r)/2]
5 if A[q]> v
6 BINARY-SEARCH(A,p,q,v)
7 return BINARY(A,p,q,v)
8 else BINARY-SEARCH(A,q+1,r,v)
9 return BINARY(A,q+1,r,v)
10 return NIL
该算法的C#实现代码:
public static int BinarySearch<T>(T[] Input,int p,int r,T v) where T:IComparable<T>
{
int q;
if (p == 0 && r == 0 && Input[0].Equals(v))
return 0;
if (p < r)
{
q = (p + r) / 2;
if (Input[q].CompareTo(v) > 0 )
{
BinarySearch(Input, p, q, v);
return Binary(Input, p, q, v);
}
else
{
BinarySearch(Input, q + 1, r, v);
return Binary(Input, q+1, r, v);
}
}
return -1;
}
private static int Binary<T>(T[] Input, int p, int r, T v) where T:IComparable<T>
{
for (int j = p; j <= r; j++)
if (Input[j].Equals(v))
return j;
return -1;
}
由公式N=a^(log a N)得:n*1/(2^(lgn))=1
因经过n次的与中点比较后肯定能找到最后一个点(最坏情况了),如果是返回下标,否则返回NIL,故最坏情况下时间复杂度为
2.3-6:观察一下2.1节中给出的INSERTION-SORT过程,在第5~7行的while循环中,采用了一种线性查找策略,在已排序的子数组A[1..j-1]中(反向)扫描。是否可以改为二分查找策略(见练习2.3-5),来将插入排序的总体最坏情况运行时间改善至Θ(nlgn)?
首先引入一个二分查找策略(与2.3-5的Binary Search略有不同)
BINARY(A,p,r,v)
5 for j←p to r
6 if A[j]> v
7 return j
8 return NIL
然后是二分查找的递归过程
BINARY-SEARCH(A,p,r,v)
10 if p=0 and r=0 and A[0] v
11 return 0
12 if p<r
13
14 if A[q] v
15 BINARY-SEARCH(A,p,q,v)
16 return BINARY(A,p,q,v)
17 else BINARY-SEARCH(A,q+1,r,v)
18 return BINARY(A,q+1,r,v)
10 return NIL
利用了二分查找策略的插入排序:
BINARYINSERTION-SORT(A)
1 for j 2 to length[A]
2 do key A[j]
3 i j-1
4 k BINARY-SEARCH(A,0,i,key)
5 if k!= NIL
6 for s i downto k
7 A[s+1] A[s]
8 A[k] key
此算法的在最坏情况下的运行时间是
该算法的C#实现代码:
private static int BinarySearchForInsertionSort<T>(T[] Input, int p, int r, T v) where T : IComparable<T>
{
int q;
if (p == 0 && r == 0 && Input[0].CompareTo(v)>0)
return 0;
if (p < r)
{
q = (p + r) / 2;
if (Input[q].CompareTo(v) > 0)
{
BinarySearchForInsertionSort(Input, p, q, v);
return BinaryForInsertionSort(Input, p, q, v);
}
else
{
BinarySearchForInsertionSort(Input, q+1, r, v);
return BinaryForInsertionSort(Input, q+1, r, v);
}
}
return -1;
}
private static int BinaryForInsertionSort<T>(T[] Input, int p, int r, T v) where T : IComparable<T>
{
for (int j = p; j <= r; j++)
if (Input[j].CompareTo(v) > 0)
return j;
return -1;
}
public static void BinaryInsertionSort<T>(T[] Input) where T : IComparable<T>
{
T key;
int i, k;
for (int j = 1; j < Input.Length; j++)
{
key = Input[j];
i = j - 1;
k = BinarySearchForInsertionSort(Input, 0, i, key);
if (k != -1)
{
for (int s = i; s>=k ; s--)
Input[s + 1] = Input[s];
Input[k] = key;
}
}
}
*2.3-7:请给出一个运行时间为Θ(nlgn)的算法,使之能在给定一个由n个整数构成的集合 和另一个整数 时,判断出 中是否存在有两个其和等于 的元素。
利用2.3-5中的BINARY-SEARCH(A,v)和2.3-6中的BINARYINSERTION-SORT(S)算法
ISEXISTSUM(S,x)
1 BINARYINSERTION-SORT(S)
2 for j←)1 to n
3 k BINARY-SEARCH(S,x-S[j])
4 if k!=NIL
5 return TRUE
6 else return FALSE
该算法的运行时间为: Θ(nlgn)
思考题
2-1:在合并排序中对小数组采用插入排序
尽管合并排序的最坏情况运行时间为Θ(nlgn),插入排序的最坏情况运行时间为Θ(n^2),但插入排序中的常数因子使得它在n较小时,运行得要更快一些。因此,在合并排序算法中,当子问题足够小时,采用插入排序就比较合适了。考虑对合并排序做这样的修改,即采用插入排序策略,对n/k个长度为k的子列表进行排序,然后,再用标准的合并机制将它们合并起来,此处k是一个特定的值。
a) 证明最坏情况下,n/k个子列表(每一个子列表的长度为k)可以用插入排序在Θ(nk)时间内完成排序。
b) 证明这些子列表可以在Θ(nlg(n/k))最坏情况时间内完成合并。
c) 如果已知修改后的合并排序算法的最坏情况运行时间为Θ(nk+nlg(n/k)),要使修改后的算法具有与标准合并排序算法一样的渐进运行时间,k的最大渐进值(即 形式)是什么(以n的函数形式表示)?
d) 在实践中,k的值应该如何选取?
a. Θ(k^2*n/k)= Θ(nk)
b.每一层代价都是Θ(n),共lg(n/k)+1层,因此相乘得Θ(nlg(n/k))
c.k=lgn
d.在满足插入排序比合并排序更快的情况下,k取最大值。
2-2:冒泡排序算法的正确性
冒泡排序(bubblesort)算法是一种流行的排序算法,它重复地交换相邻两个反序元素。
BUBBLESORT(A)
1 for i←1 to length[A]
2 do for j←length[A] downto i+1
3 do if A[j]< A[j-1]
4 then exchange A[j]←→ A[j-1]
a) 设A’表示BULLESORT(A)的输出,为了证明BUBBLESORT是正确的,需要证明它能够终止,并且有:A’[1]<=A’[2]<=..<=A’[n]
其中n=length[A]。为了证明BUBBLESORT的确能实现排序的效果,还需要证明什么?
下面两个部分将证明不等式(2.3)。
b) 对第2~4行中的for循环,给出一个准确的循环不变式,并证明该循环不变式是成立的。在证明中采用本章中给出的循环不变式证明结构。
c) 利用在b)部分证明的循环不变式的终止条件,为第1~4行中的for循环给出一个循环不变式,它可以用来证明不等式(2.3)。你的证明因采用本章中给出的循环不变式的证明结构。
d) 冒泡排序算法的最坏情况运行时间是什么?比较它与插入排序的运行时间。
a. A’中的元素全部来自于A中变换后的元素。
b.
初始化:j=n,子数组为A[j..n]即A[n..n],此中仅有一个元素因此是已排序的。
保持:如果A[j..n]是已排序的,按计算过程知A[j] A[j+1] … A[n],当插入元素A[j-1]时,如果A[j] A[j-1]则互换A[j]、A[j-1],否则A[j-1]直接插入A[j..n]的最前,因此A[j-1..n]也是已排序的。
终止:j=i时循环结束,此时A[i..n]是已排序的。与外层循环条件一直,所以算法正确。
c.
初始化:i=1时,子数组A[1..i-1]是空的,因此在第一轮迭代前成立。
保持:假设子数组A[1..i-1]已排序,则之中元素是A[1..n]中最小的i-1个元素,按b证明的循环不变式,知插入A[i]元素后的子数组A[1..i]是A[1..n]中最小的i个元素,并且A[1..i]亦是已排序的。
终止:当i=n+1时循环终止,此时已处理的子数组是A[1..n],A[1..n]是已排序的,这个数组就是要排序的数组。因此算法正确。
d.Σ(n-i)+Σ(n-i-1)=Θ(n^2),与插入排序相同
2-3:霍纳规则的正确性
以下的代码片段实现了用于计算多项式
代码片段见PDF
的霍纳规则(Horner’s Rule)。
给定系数a0,a1,…an以及x的值,有
1 y←0
2 i←n
3 while i>=0
4 do y←i+x*y
5 i←i-1
a) 这一段实现霍纳规则的代码的渐进运行时间是什么?
b) 写出伪代码以实现朴素多项式求值(native polynomial-evaluation)算法,它从头开始计算多项式的每一个项。这个算法的运行时间是多少?它与实现霍纳规则的代码段的运行时间相比怎样?
c) 证明一下给出的是针对第3~5行中while循环的一个循环不变式:
在第3~5行中while循环每一轮迭代的开始,有:公式略
不包含任何项的和视为等于0。你的证明应遵循本章中给出的循环不变式的证明结构,并应证明在终止时,有:公式略(请见PDF)
d) 最后证明以上给出的代码片段能够正确的计算由系数a0,a1,…,an
2-4:逆序对
设A[1..n]是一个包含n个不同数的数组。如果在i<j的情况下,有A[i]>A[j],则(i,j)就称为A中的一个逆序对(inversion)。
a) 列出数组<2,3,8,6,1>的5个逆序。
b) 如果数组的元素取自集合{1,2,…,n},那么,怎样的数组含有最多的逆序对?它包含多少个逆序对?
c) 插入排序的运行时间与输入数组中逆序对的数量之间有怎样的关系?说明你的理由。
d) 给出一个算法,它能用Θ(lgn)间,确定n个元素的任何排列中逆序对的数目。(提示:修改合并排序)
a.(2,1),(3,1),(8,6),(8,1),(6,1)
b.{n,n-1,n-2,…,1}有最多的逆序对。共n*(n-1)/2
c.逆序对越多,说明运行情况越坏,所以逆序对的数量与插入排序的运行效率成反比。
d.修改MERGE过程的最后一个FOR循环即可。