虽然题中有n<=100个点,但实际上你必须走过的点只有H<=15个。而且经过任意点但不消耗C[i]跟D[i]可以为无限次,所以可以floyd预处理出H个点的最短路,之后剩下的。。。就成了裸的TSP了,dp[sta][i]表示已经遍历过了sta集合中的点,现在在i点所需的最少花费。dp[i][j]=-1表示该点不可到达。。但是在最后统计最小解的时候要特判。。。
#include<algorithm> #include<iostream> #include<cstring> #include<cstdlib> #include<fstream> #include<sstream> #include<bitset> #include<vector> #include<string> #include<cstdio> #include<cmath> #include<stack> #include<queue> #include<stack> #include<map> #include<set> #define FF(i, a, b) for(int i=a; i<b; i++) #define FD(i, a, b) for(int i=a; i>=b; i--) #define REP(i, n) for(int i=0; i<n; i++) #define CLR(a, b) memset(a, b, sizeof(a)) #define debug puts("**debug**") #define LL long long #define PB push_back #define MP make_pair #define eps 1e-10 using namespace std; const int maxn = 105; const int INF = 1e9; int n, m, H, V, T; int go[20], C[20], D[20], g[maxn][maxn], dp[1<<15][20]; void floyd() { FF(i, 1, n+1) { FF(j, 1, n+1) g[i][j] = INF; g[i][i] = 0; } int u, v, w; while(m--) { scanf("%d%d%d", &u, &v, &w); if(g[u][v] > w) g[u][v] = g[v][u] = w; } FF(k, 1, n+1) FF(i, 1, n+1) FF(j, 1, n+1) g[i][j] = min(g[i][j], g[i][k] + g[k][j]); } int main() { scanf("%d", &T); while(T--) { scanf("%d%d%d", &n, &m, &V); floyd(); scanf("%d", &H); REP(i, H) scanf("%d%d%d", &go[i], &C[i], &D[i]); int tot = (1<<H) - 1; CLR(dp, -1); REP(i, H) if(V - g[1][go[i]] >= D[i]) dp[1<<i][i] = g[1][go[i]] - C[i] + D[i]; FF(i, 1, tot+1) REP(j, H) if(dp[i][j] != -1) //dp[i][j]可到达 { REP(k, H) if((i&(1<<k)) == 0) //k点未到达 { int sta = i|(1<<k); if(V - dp[i][j] - g[go[j]][go[k]] >= D[k]) { if(dp[sta][k] == -1) dp[sta][k] = dp[i][j] + g[go[j]][go[k]] - C[k] + D[k]; else dp[sta][k] = min(dp[sta][k], dp[i][j] + g[go[j]][go[k]] - C[k] + D[k]); } } } int ans = INF; //特判dp[tot][i]可到达,最开始忘了。。。10+wa REP(i, H) if(dp[tot][i] != -1) ans = min(ans, dp[tot][i] + g[go[i]][1]); printf("%s\n", ans <= V ? "YES" : "NO"); } return 0; }