题意:
Y和M去KFC见面,有很多KFC,帮他们找一个KFC使得他们花费的时间总和最小
解题思路:
两次 bfs 分别找出他们到达他们都能到达的所有的KFC的最短时间
然后比较他们花费时间的和找出最小
#include <iostream> #include <cstdio> #include <cstring> #include <queue> using namespace std; const int maxn = 200 + 5; char Map[maxn][maxn]; bool vis[maxn][maxn]; int dis[maxn][maxn][2]; int dir[][2] = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}}; int n, m; struct Node { int x, y; int Count; }; void bfs(int i, int j, int y_m); int main() { // freopen("in.txt", "r", stdin); while (cin>>n>>m) { memset(dis, 0, sizeof(dis)); for (int i=0; i<n; ++i) { for (int j=0; j<m; ++j) { cin>>Map[i][j]; } } for (int i=0; i<n; ++i) { for (int j=0; j<m; ++j) { if (Map[i][j] == 'Y') { memset(vis, false, sizeof(vis)); bfs(i, j, 0); } if (Map[i][j] == 'M') { memset(vis, false, sizeof(vis)); bfs(i, j, 1); } } } int Min = INT_MAX; for (int i=0; i<n; ++i) { for (int j=0; j<m; ++j) { if (Map[i][j] == '@') { if (dis[i][j][0] > 0) { int t = dis[i][j][0] + dis[i][j][1]; if (t < Min) { Min = t; } } } } } cout<<Min*11<<endl; } return 0; } void bfs(int i, int j, int y_m) { Node node; queue<Node> Queue; node.x = i; node.y = j; node.Count = 0; Queue.push(node); vis[i][j] = true; while (!Queue.empty()) { int nx = Queue.front().x; int ny = Queue.front().y; int nCount = Queue.front().Count; Queue.pop(); for (int i=0; i<4; ++i) { node.x = nx + dir[i][0]; node.y = ny + dir[i][1]; node.Count = nCount + 1; if ((node.x>=0) && (node.x<n) && (node.y>=0) && (node.y<m)) { if (Map[node.x][node.y]!='#' && !vis[node.x][node.y]) { Queue.push(node); vis[node.x][node.y] = true; dis[node.x][node.y][y_m] = node.Count; } } } } }
题意:
你的坦克每次每次可以进行两种操作,向四周的空地移动或者射击砖墙将它变成空地但是不移动
问到达目的地需要的最少操作次数
解题思路:
关键是要保证队列中的操作次数是递增的
一:
可以将射击砖墙不移动这个操作 改为 把砖墙当作“伪空地”然后移动到这个地方,以后若遇到“伪空地”则变成空地然后直接跳出这一次循环
二、
优先队列
#include <iostream> #include <cstdio> #include <cstring> #include <queue> using namespace std; const int maxn = 300 + 5; int M, N; char Map[maxn][maxn]; bool vis[maxn][maxn]; int dir[][4] = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}}; struct Node { int x, y; int Count; }; int bfs(int a, int b); int main() { // freopen("in.txt", "r", stdin); while (cin>>M>>N && !(M==0&&N==0)) { memset(vis, false, sizeof(vis)); int x, y; for (int i=0; i<M; ++i) { for (int j=0; j<N; ++j) { cin>>Map[i][j]; if (Map[i][j] == 'Y') { x = i; y = j; } } } int least = bfs(x, y); cout<<least<<endl; } return 0; } int bfs(int a, int b) { queue<Node> Queue; Node node; node.x = a; node.y = b; node.Count = 0; Queue.push(node); vis[a][b] = 1; while (!Queue.empty()) { int nx = Queue.front().x; int ny = Queue.front().y; int nCount = Queue.front().Count; Queue.pop(); if (Map[nx][ny] == 'T') { return nCount; } if (Map[nx][ny] == 'B') { Map[nx][ny] = 'E'; node.x = nx; node.y = ny; node.Count = nCount + 1; Queue.push(node); continue; } for (int i=0; i<4; ++i) { node.x = nx + dir[i][0]; node.y = ny + dir[i][1]; if (node.x>=0 && node.x<M && node.y>=0 && node.y<N) { if (!vis[node.x][node.y] && (Map[node.x][node.y] != 'R' && Map[node.x][node.y] != 'S')) { node.Count = nCount + 1; vis[node.x][node.y] = 1; Queue.push(node); } } } } return -1; }
#include <iostream> #include <cstdio> #include <cstring> #include <queue> using namespace std; const int maxn = 300 + 5; int M, N; char Map[maxn][maxn]; bool vis[maxn][maxn]; int dir[][4] = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}}; struct Node { int x, y; int Count; bool operator < (const Node &p) const{ return p.Count < Count; } }; int bfs(int a, int b); int main() { // freopen("in.txt", "r", stdin); while (cin>>M>>N && !(M==0&&N==0)) { memset(vis, false, sizeof(vis)); int x, y; for (int i=0; i<M; ++i) { for (int j=0; j<N; ++j) { cin>>Map[i][j]; if (Map[i][j] == 'Y') { x = i; y = j; } } } int least = bfs(x, y); cout<<least<<endl; } return 0; } int bfs(int a, int b) { priority_queue<Node> Queue; Node node; node.x = a; node.y = b; node.Count = 0; Queue.push(node); vis[a][b] = 1; while (!Queue.empty()) { int nx = Queue.top().x; int ny = Queue.top().y; int nCount = Queue.top().Count; Queue.pop(); if (Map[nx][ny] == 'T') { return nCount; } for (int i=0; i<4; ++i) { node.x = nx + dir[i][0]; node.y = ny + dir[i][1]; if (node.x>=0 && node.x<M && node.y>=0 && node.y<N) { if (!vis[node.x][node.y] && (Map[node.x][node.y] != 'R' && Map[node.x][node.y] != 'S')) { if (Map[node.x][node.y] == 'B') { node.Count = nCount + 2; } else { node.Count = nCount + 1; } vis[node.x][node.y] = 1; Queue.push(node); } } } } return -1; }
#include <iostream> #include <cstdio> #include <cstring> #include <queue> using namespace std; const int maxn = 300 + 5; int M, N; char Map[maxn][maxn]; bool vis[maxn][maxn]; int dir[][4] = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}}; struct Node { int x, y; int Count; friend bool operator < (const Node &a, const Node &b) { return b.Count < a.Count; } }; int bfs(int a, int b); int main() { // freopen("in.txt", "r", stdin); while (cin>>M>>N && !(M==0&&N==0)) { memset(vis, false, sizeof(vis)); int x, y; for (int i=0; i<M; ++i) { for (int j=0; j<N; ++j) { cin>>Map[i][j]; if (Map[i][j] == 'Y') { x = i; y = j; } } } int least = bfs(x, y); cout<<least<<endl; } return 0; } int bfs(int a, int b) { priority_queue<Node> Queue; Node node; node.x = a; node.y = b; node.Count = 0; Queue.push(node); vis[a][b] = 1; while (!Queue.empty()) { int nx = Queue.top().x; int ny = Queue.top().y; int nCount = Queue.top().Count; Queue.pop(); if (Map[nx][ny] == 'T') { return nCount; } for (int i=0; i<4; ++i) { node.x = nx + dir[i][0]; node.y = ny + dir[i][1]; if (node.x>=0 && node.x<M && node.y>=0 && node.y<N) { if (!vis[node.x][node.y] && (Map[node.x][node.y] != 'R' && Map[node.x][node.y] != 'S')) { if (Map[node.x][node.y] == 'B') { node.Count = nCount + 2; } else { node.Count = nCount + 1; } vis[node.x][node.y] = 1; Queue.push(node); } } } } return -1; }
#include <iostream> #include <cstdio> #include <cstring> #include <queue> using namespace std; const int maxn = 300 + 5; int M, N; char Map[maxn][maxn]; bool vis[maxn][maxn]; int dir[][4] = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}}; struct Node { int x, y; int Count; }; bool operator < (const Node &a, const Node &b) { return b.Count < a.Count; } int bfs(int a, int b); int main() { // freopen("in.txt", "r", stdin); while (cin>>M>>N && !(M==0&&N==0)) { memset(vis, false, sizeof(vis)); int x, y; for (int i=0; i<M; ++i) { for (int j=0; j<N; ++j) { cin>>Map[i][j]; if (Map[i][j] == 'Y') { x = i; y = j; } } } int least = bfs(x, y); cout<<least<<endl; } return 0; } int bfs(int a, int b) { priority_queue<Node> Queue; Node node; node.x = a; node.y = b; node.Count = 0; Queue.push(node); vis[a][b] = 1; while (!Queue.empty()) { int nx = Queue.top().x; int ny = Queue.top().y; int nCount = Queue.top().Count; Queue.pop(); if (Map[nx][ny] == 'T') { return nCount; } for (int i=0; i<4; ++i) { node.x = nx + dir[i][0]; node.y = ny + dir[i][1]; if (node.x>=0 && node.x<M && node.y>=0 && node.y<N) { if (!vis[node.x][node.y] && (Map[node.x][node.y] != 'R' && Map[node.x][node.y] != 'S')) { if (Map[node.x][node.y] == 'B') { node.Count = nCount + 2; } else { node.Count = nCount + 1; } vis[node.x][node.y] = 1; Queue.push(node); } } } } return -1; }
在中国象棋中,棋子活动的场所,叫做"棋盘",在长方形的平面上,绘有九条平行的竖线和十条平行横线相交组成,共九十个交叉点,棋子就摆在这些交叉点上。中间第五、第六两横线之间未画竖线的空白地带,称为"河界",整个棋盘就以"河界"分为相等的两部分;两方将帅坐镇、画有"米"字方格的地方,叫做"九宫"。
中国象棋中,马是威力很大的棋子。马走动的方法是一直一斜,即先横着或直着走一格,然后再斜着走一个对角线,俗称"马走斜"。马一次可走的选择点可以达到四周的八个点,故有"八面威风"之说。
我们约定最左下角点的坐标为(0,0),则最右上角的坐标为(9, 8)。上图中马在坐标(2, 2)处。它走一步可以到达坐标点(1, 0),(0, 1),(0, 3),(1, 4),(3, 4),(4, 3),(4, 1)或(3,0)。
我们约定当前棋盘上只有一个马,给出起点坐标和终点坐标,求从起点到终点,马最少要走几步?
Input
4个整数,前2个数表示起点坐标,后2个数表示终点坐标。
Output
一个整数,表示从起点到终点最少需要走的步数。
Sample Input
2 2 5 2
Sample Output
3
#include <iostream> #include <cstdio> #include <cstring> #include <queue> using namespace std; struct Node { int x, y; int steps; }; const int maxn = 15; bool vis[maxn][maxn]; int dir[][2] = {{-1, -2}, {-2, -1}, {-2, 1}, {-1, 2}, {1, 2}, {2, 1}, {2, -1}, {1, -2}}; int x1, y1, x2, y2; int bfs(); int main() { // freopen("in.txt", "r", stdin); memset(vis, false, sizeof(vis)); scanf("%d%d%d%d", &x1, &y1, &x2, &y2); x1 = 9-x1; x2 = 9-x2; printf("%d\n", bfs()); return 0; } int bfs() { Node node; node.x = x1; node.y = y1; node.steps = 0; vis[x1][y1] = true; queue<Node> Queue; Queue.push(node); while (!Queue.empty()) { int nx = Queue.front().x; int ny = Queue.front().y; int ns = Queue.front().steps; if (nx == x2 && ny == y2) { return ns; } Queue.pop(); for (int i=0; i<8; ++i) { node.x = nx + dir[i][0]; node.y = ny + dir[i][1]; node.steps = ns + 1; if (0 <= node.x && node.x <= 9 && 0 <= node.y && node.y <= 8 && !vis[node.x][node.y]) { vis[node.x][node.y] = true; Queue.push(node); } } } return 0; }
#include <iostream> #include <cstdio> #include <cstring> #include <queue> using namespace std; struct Node { int x, y; int step; }; const int maxn = 100 + 5; char Map[maxn][maxn]; bool vis[maxn][maxn]; int n, m; int s_x, s_y, e_x, e_y; int dir[][2] = {{-1, -2}, {-2, -1}, {-2, 1}, {-1, 2}, {1, 2}, {2, 1}, {2, -1}, {1, -2}}; int flag[][2] = {{0, -1}, {-1, 0}, {-1, 0}, {0, 1}, {0, 1}, {1, 0}, {1, 0}, {0, -1}}; int bfs(void); int main() { // freopen("in.txt", "r", stdin); while (scanf("%d%d", &n, &m) != EOF) { for (int i=0; i<n; ++i) { for (int j=0; j<m; ++j) { cin>>Map[i][j]; if (Map[i][j] == 's') { s_x = i; s_y = j; } else if (Map[i][j] == 'e') { e_x = i; e_y = j; } } } printf("%d\n", bfs()); } return 0; } int bfs(void) { memset(vis, false, sizeof(vis)); Node node; node.x = s_x; node.y = s_y; node.step = 0; vis[s_x][s_y] = true; queue<Node> Queue; Queue.push(node); while (!Queue.empty()) { int nx = Queue.front().x; int ny = Queue.front().y; int nstep = Queue.front().step; if (nx == e_x && ny == e_y) { return nstep; } Queue.pop(); for (int i=0; i<8; ++i) { int a = nx + flag[i][0]; int b = ny + flag[i][1]; if (Map[a][b] == '.') { node.x = nx + dir[i][0]; node.y = ny + dir[i][1]; node.step = nstep + 1; if (node.x >= 0 && node.x <= n && node.y >=0 && node.y <= m && !vis[node.x][node.y] && Map[node.x][node.y] != '#') { Queue.push(node); vis[node.x][node.y] = true; } } } } return -1; }
有12张连在一起的12生肖的邮票。
现在你要从中剪下5张来,要求必须是连着的。
(仅仅连接一个角不算相连)
比如,粉红色所示部分就是合格的剪取。
请你计算,一共有多少种不同的剪取方法。
请填写表示方案数目的整数。
注意:你提交的应该是一个整数,不要填写任何多余的内容或说明性文字。
答案:
116
解题思路:
一:
选出5张不同邮票
规律:
(1)
某个邮票的上下左右可以分别用 -4 , +4 ,-1, +1 来表示
但要注意特殊情况,比如4、8、5、9
(2)
每个邮票至少和其它的一个邮票相连
假如将邮票a与邮票b相连的边与邮票b与邮票a相连的边看成是不同的
那么相连的边数应该 ≥ 8
二、
参考http://blog.csdn.net/u014552756/article/details/50946197
在原图中向上为-4,向下为+4,向左为-1,向右为+1,但是遇到4、8、5、9情况不符合
重构一下原图:
向上为-5,向下为+5,向左为-1,向右为+1
然后dfs判联通
#include <iostream> #include <cstring> using namespace std; const int maxn = 12 + 5; int num[maxn]; bool vis[maxn]; bool live[5]; int Count = 0; int dir[4] = {-4, 4, -1 , 1}; bool check(void); int main() { for (int i=1; i<=8; ++i) { vis[i] = true; num[0] = i; for (int j=i+1; j<=9; ++j) { vis[j] = true; num[1] = j; for (int k=j+1; k<=10; ++k) { vis[k] = true; num[2] = k; for (int x=k+1; x<=11; ++x) { vis[x] = true; num[3] = x; for (int y=x+1; y<=12; ++y) { vis[y] = true; num[4] = y; memset(live, false, sizeof(live)); if (check()) { ++Count; } vis[y] = false; } vis[x] = false; } vis[k] = false; } vis[j] = false; } vis[i] = false; } cout<<Count<<endl; return 0; } bool check(void) { int edge = 0; for (int i=0; i<4; ++i) { for (int j=0; j<5; ++j) { if (!((num[j] == 4 || num[j] == 8) && i == 3) && !((num[j] == 5 || num[j] == 9) && i == 2)) { if (vis[num[j] + dir[i]] == 1) { edge++; live[j] = true; } } } } if (edge >= 8 && live[0] && live[1] && live[2] && live[3] && live[4]) { return true; } return false; }
#include <iostream> #include <cstring> using namespace std; const int maxn = 12 + 5; int Map[] = {1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14}; int num[maxn]; bool vis[maxn]; int Count = 0; int dir[4] = {-5, 5, -1 , 1}; void dfs(int n); int main() { for (int i=0; i<8; ++i) { num[0] = Map[i]; for (int j=i+1; j<9; ++j) { num[1] = Map[j]; for (int k=j+1; k<10; ++k) { num[2] = Map[k]; for (int x=k+1; x<11; ++x) { num[3] = Map[x]; for (int y=x+1; y<12; ++y) { num[4] = Map[y]; memset(vis, false, sizeof(vis)); vis[0] = true; dfs(0); bool flag = true; for (int a=0; a<5; ++a) { if (!vis[a]) { flag = false; break; } } if (flag) { ++Count; } } } } } } cout<<Count<<endl; return 0; } void dfs(int n) { for (int i=0; i<4; ++i) { int t = num[n] + dir[i]; if (1 <= t && t <= 14 && t != 5 && t != 10) { for (int j=0; j<5; ++j) { if (!vis[j] && num[j] == t) { vis[j] = true; dfs(j); } } } } }