http://poj.org/problem?id=3259
Description
While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..N, M (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.
As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .
To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.
Input
Output
Sample Input
2 3 3 1 1 2 2 1 3 4 2 3 1 3 1 3 3 2 1 1 2 3 2 3 4 3 1 8
Sample Output
NO YES
Hint
农夫的农场里存在n块地,存在m条无向路,从每条路的一段到另一端需要花费t的时间,存在w个虫洞,每个虫洞都是单向的从虫洞的起点到虫洞的终点需要-t的时间,也就是时间倒流了。现在农夫要从一块田地出发再回到原出发点,问他能否在回到出发点的时候比刚出发是时间要早。
解题思路:
模型就是一张有负权边的图网络,若能回到原出发点的时候会时间不出发时还少,那就说明一定存在这负权边。这样一来,这道题就变成了判断是否存在负权边了。
在spfa算法中,如果以个顶点入队次数超过了n次,那就说明存在了负权边。
#include <stdio.h> #include <string.h> #include <iostream> using namespace std; const int maxn=1e5; const int INF=1e9; int dis[maxn],head[maxn],visit[maxn],outque[maxn]; int ip,que[maxn],flag; struct node { int to; int next; int w; }; node edge[maxn]; void add(int u,int v,int w) { edge[ip].to=v,edge[ip].w=w,edge[ip].next=head[u],head[u]=ip++; } void spfa(int s,int n) { memset(visit,0,sizeof(visit)); memset(outque,0,sizeof(outque)); for(int i=0;i<=n;i++) dis[i]=INF; dis[s]=0; visit[s]=1; int front=-1,tail=-1; que[++tail]=s; int top,to; int temp; while(front!=tail) { if(++front>n) front-=n; top=que[front]; outque[top]++;//入队次数加加 if(outque[top]>n)//入队次数大于n,存在负权环。算法结束 { flag=0; //printf("&&\n"); return; } visit[top]=0; for(int k=head[top];k!=-1;k=edge[k].next) { to=edge[k].to; temp=dis[top]+edge[k].w; if(dis[to]>temp) { dis[to]=temp; if(!visit[to]) { if(++tail>n) tail-=n; que[tail]=to; visit[to]=1; } } } } } int main() { int T,m,k,u,v,w,n; scanf("%d",&T); while(T--) { scanf("%d%d%d",&n,&m,&k); memset(head,-1,sizeof(head)); ip=0; for(int i=0;i<m;i++) { scanf("%d%d%d",&u,&v,&w); add(u,v,w); add(v,u,w); } for(int i=0;i<k;i++) { scanf("%d%d%d",&u,&v,&w); add(u,v,-w); } flag=1; spfa(1,n); if(!flag) printf("YES\n"); else printf("NO\n"); } return 0; }