poj 1830 开关问题 【高斯消元 求解自由变元数目】

开关问题
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 6771   Accepted: 2589

Description

有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为开就变为关,如果为关就变为开。你的目标是经过若干次开关操作后使得最后N个开关达到一个特定的状态。对于任意一个开关,最多只能进行一次开关操作。你的任务是,计算有多少种可以达到指定状态的方法。(不计开关操作的顺序)

Input

输入第一行有一个数K,表示以下有K组测试数据。 
每组测试数据的格式如下: 
第一行 一个数N(0 < N < 29) 
第二行 N个0或者1的数,表示开始时N个开关状态。 
第三行 N个0或者1的数,表示操作结束后N个开关的状态。 
接下来 每行两个数I J,表示如果操作第 I 个开关,第J个开关的状态也会变化。每组数据以 0 0 结束。 

Output

如果有可行方法,输出总数,否则输出“Oh,it's impossible~!!” 不包括引号

Sample Input

2
3
0 0 0
1 1 1
1 2
1 3
2 1
2 3
3 1
3 2
0 0
3
0 0 0
1 0 1
1 2
2 1
0 0

Sample Output

4
Oh,it's impossible~!!

Hint

第一组数据的说明: 
一共以下四种方法: 
操作开关1 
操作开关2 
操作开关3 

操作开关1、2、3 (不记顺序) 



高斯消元入门题目,构建矩阵很简单。


对于每盏灯的初始状态start,末状态end,可以列出一个方程:

start ^ (所有可能改变其的灯) * 1 ^ (所有不可能改变其状态的灯) * 0 = end。

两边同时异或start,

(所有可能改变其状态的灯) * 1 ^ (所有不可能改变其状态的灯) * 0 = start ^ end;


列出N个方程组,N个未知量,然后直接模板求出自由变元数,方案数为自由变元数目free_num的组合数 1 << free_num。



注意题目I和J 的顺序,这里WA两次o(╯□╰)o

AC代码:


#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#define MAXN 30
using namespace std;
int a[MAXN][MAXN];//增广矩阵
int N;
int equ, var;//方程数 变元数
int Gauss()
{
    int max_r;//记录当前列 绝对值最大的行号
    int col = 0;//当前处理的列
    int k;
    //将增广矩阵 转变为 阶梯矩阵
    for(k = 0; k < equ && col < var; k++, col++)
    {
        /***列主消元法***/
        /*找到第col列 绝对值最大的行i(i > k)*/
        max_r = k;
        for(int i = k+1; i < equ; i++)
            if(abs(a[i][col]) > abs(a[max_r][col]))
                max_r = i;
        if(max_r != k)//找到——从当前处理的列开始 交换k和max_r两行
            for(int i = col; i < var+1; i++)
                swap(a[max_r][i], a[k][i]);
        if(a[k][col] == 0)//第col列在第k行下面全是0,处理下一列
        {
            k--;
            continue;
        }
        for(int i = k+1; i < equ; i++)
        {
            if(a[i][col] != 0)
            {
                for(int j = col; j < var+1; j++)
                    a[i][j] ^= a[k][j];
            }
        }
    }
    for(int i = k; i < equ; i++)
        if(a[i][col] != 0)
            return -1;//无解
    if(k < var)
        return var - k;//返回自由变元数目
    return 0;
}
void init_a()
{
    memset(a, 0, sizeof(a));
    for(int i = 0; i < N; i++)
        scanf("%d", &a[i][N]), a[i][i] = 1;
    for(int i = 0; i < N; i++)
    {
        int b;
        scanf("%d", &b);
        a[i][N] ^= b;
    }
    int I, J;
    while(scanf("%d%d", &I, &J), I||J)
    {
        I--, J--;
        a[J][I] = 1;
    }
    equ = var = N;
}
int main()
{
    int t;
    scanf("%d", &t);
    while(t--)
    {
        scanf("%d", &N);
        init_a();
        int free_num = Gauss();
        if(free_num == 0)//唯一解
            printf("1\n");
        else if(free_num == -1)//无解
            printf("Oh,it's impossible~!!\n");
        else
            printf("%d\n", 1<<free_num);
    }
    return 0;
}


你可能感兴趣的:(poj 1830 开关问题 【高斯消元 求解自由变元数目】)