线段树

树状数组可以说是线段树的分支;树状数组可以解决的问题线段树都可以解决,而线段树可以解决的问题树状数组却不一定可以解决;

一 定义

线段树是一种 二叉搜索树,与 区间树相似,它将一个区间划分成一些单元区间,每个单元区间对应线段树中的一个叶结点。
对于线段树中的每一个非 叶子节点[a,b],它的左儿子表示的区间为[a,(a+b)/2],右儿子表示的区间为[(a+b)/2+1,b]。因此线段树是 平衡二叉树,最后的子节点数目为N,即整个线段区间的长度。 线段树需要的空间为数组大小的四倍。
使用线段树可以快速的查找某一个节点在若干条线段中出现的次数, 时间复杂度为O(logN)。而未优化的 空间复杂度为2N,因此有时需要离散化让空间压缩。

二 基本结构

线段树是建立在 线段的基础上,每个结点都代表了一条线段[a,b]。长度为1的线段称为元线段。非元线段都有两个子结点,左结点代表的线段为[a,(a + b) / 2],右结点代表的线段为[((a + b) / 2)+1,b]。
下图就是两棵长度范围为[1,5][1,10]的线段树。
长度范围为[1,L] 的一棵线段树的深度为log (L) + 1。这个显然,而且存储一棵线段树的空间复杂度为O(L)。

三 基本操作

#include<iostream>
#include<algorithm>
#define lson l,m,x<<1
#define rson m+1,r,x<<1|1
using namespace std;
#define Size 200010
int tree[Size<<2];
void MAX(int x){
	tree[x]=max(tree[x<<1],tree[x<<1|1]);
}
void build(int l, int r, int x){
	if(l==r){ 。。 
	return;  }
	int m=(l+r)>>1;
	build(lson);
	build(rson);
}
int merage(int l,int r,int x){
	if(l==r){
		tree[x]-=wid;         
		return l;               
	}
	int m=(l+r)>>1,ret;
	if(tree[x<<1]>=wid)
	ret=merage(lson);
	else
	ret=merage(rson);
	MAX(x);                  
	return ret;              
}
int main()
{
	.
	.
	.
	.
	return 0;
}


大牛博客:

http://blog.csdn.net/metalseed/article/details/8039326


下面是hh线段树代码,典型练习哇~

在代码前先介绍一些我的线段树风格:

  • maxn是题目给的最大区间,而节点数要开4倍,确切的来说节点数要开大于maxn的最小2x的两倍
  • lson和rson分辨表示结点的左儿子和右儿子,由于每次传参数的时候都固定是这几个变量,所以可以用预定于比较方便的表示
  • 以前的写法是另外开两个个数组记录每个结点所表示的区间,其实这个区间不必保存,一边算一边传下去就行,只需要写函数的时候多两个参数,结合lson和rson的预定义可以很方便
  • PushUP(int rt)是把当前结点的信息更新到父结点
  • PushDown(int rt)是把当前结点的信息更新给儿子结点
  • rt表示当前子树的根(root),也就是当前所在的结点

整理这些题目后我觉得线段树的题目整体上可以分成以下四个部分:



单点更新:最最基础的线段树,只更新叶子节点,然后把信息用PushUP(int r)这个函数更新上来


  • hdu1166 敌兵布阵
  • 题意:O(-1)
  • 思路:O(-1)
    线段树功能:update:单点增减 query:区间求和

code:

  1. #include<cstring>  
  2. #include<iostream>  
  3.   
  4. #define M 50005  
  5. #define lson l,m,rt<<1  
  6. #define rson m+1,r,rt<<1|1  
  7. /*left,right,root,middle*/  
  8.   
  9. int sum[M<<2];  
  10.   
  11. inline void PushPlus(int rt)  
  12. {  
  13.     sum[rt] = sum[rt<<1] + sum[rt<<1|1];  
  14. }  
  15.   
  16. void Build(int l, int r, int rt)  
  17. {  
  18.     if(l == r)  
  19.     {  
  20.         scanf("%d", &sum[rt]);  
  21.         return ;  
  22.     }  
  23.     int m = ( l + r )>>1;  
  24.   
  25.     Build(lson);  
  26.     Build(rson);  
  27.     PushPlus(rt);  
  28. }  
  29.   
  30. void Updata(int p, int add, int l, int r, int rt)  
  31. {  
  32.   
  33.     if( l == r )  
  34.     {  
  35.         sum[rt] += add;  
  36.         return ;  
  37.     }  
  38.     int m = ( l + r ) >> 1;  
  39.     if(p <= m)  
  40.         Updata(p, add, lson);  
  41.     else  
  42.         Updata(p, add, rson);  
  43.   
  44.     PushPlus(rt);  
  45. }  
  46.   
  47. int Query(int L,int R,int l,int r,int rt)  
  48. {  
  49.     if( L <= l && r <= R )  
  50.     {  
  51.         return sum[rt];  
  52.     }  
  53.     int m = ( l + r ) >> 1;  
  54.     int ans=0;  
  55.     if(L<=m )  
  56.         ans+=Query(L,R,lson);  
  57.     if(R>m)  
  58.         ans+=Query(L,R,rson);  
  59.   
  60.     return ans;  
  61. }  
  62. int main()  
  63. {     
  64.     int T, n, a, b;  
  65.     scanf("%d",&T);  
  66.     forint i = 1; i <= T; ++i )  
  67.     {  
  68.         printf("Case %d:\n",i);  
  69.         scanf("%d",&n);  
  70.         Build(1,n,1);  
  71.   
  72.         char op[10];  
  73.   
  74.         while( scanf("%s",op) &&op[0]!='E' )  
  75.         {  
  76.   
  77.             scanf("%d %d", &a, &b);  
  78.             if(op[0] == 'Q')  
  79.                 printf("%d\n",Query(a,b,1,n,1));  
  80.             else if(op[0] == 'S')  
  81.                 Updata(a,-b,1,n,1);  
  82.             else  
  83.                 Updata(a,b,1,n,1);  
  84.   
  85.         }  
  86.     }  
  87.     return 0;  
  88. }  

部分为粘贴而来;






你可能感兴趣的:(线段树)