- 深度学习-13-小语言模型之SmolLM的使用
皮皮冰燃
深度学习深度学习
文章附录1SmolLM概述1.1SmolLM简介1.2下载模型2运行2.1在CPU/GPU/多GPU上运行模型2.2使用torch.bfloat162.3通过位和字节的量化版本3应用示例4问题及解决4.1attention_mask和pad_token_id报错4.2max_new_tokens=205参考附录1SmolLM概述1.1SmolLM简介SmolLM是一系列尖端小型语言模型,提供三种规
- vllm在线推理踩坑记
懂点投资的码农
大语言模型ai语言模型python
最近在《AI大模型全栈工程师》课程里看老师推荐使用vllm部署大模型,优点就不详细介绍了,这里摘抄一段来自于Qwen2上手指南对于它的简单介绍:它易于使用,且具有最先进的服务吞吐量、高效的注意力键值内存管理(通过PagedAttention实现)、连续批处理输入请求、优化的CUDA内核等功能。至于原理就先不看了,直接上手部署,以后再来补理论知识。一、vLLM在线推理在Qwen2的上市指南里介绍了v
- 大模型框架:vLLM
m0_37559973
大模型大模型通义千问Qwen
目录一、vLLM介绍二、安装vLLM2.1使用GPU进行安装2.2使用CPU进行安装2.3相关配置三、使用vLLM3.1离线推理3.2适配OpenAI-API的API服务一、vLLM介绍vLLM是伯克利大学LMSYS组织开源的大语言模型高速推理框架。它利用了全新的注意力算法「PagedAttention」,提供易用、快速、便宜的LLM服务。二、安装vLLM2.1使用GPU进行安装vLLM是一个Py
- 思考:怎样让自己每天都精力充沛
廷伟
让自己方向坚定,精力充沛的能量法则:Habit习惯能量的倍增Energy精力,能量的来源Attention注意力,能量的转化Target目标,能量的积累这是读张家瑞老师的《能量法则》最重要的四句话。从2018年认识家瑞,一起在AACTP武汉主席峰会一起学习,一起成长,到受他影响,定下更大的目标,践行《职场圆梦手册》,到现在读他的书,更加了解他的经历,一路以来,受他影响颇多。进入地产行业以来,日益忙
- AI推介-多模态视觉语言模型VLMs论文速览(arXiv方向):2024.07.25-2024.08.01
小小帅AIGC
VLM论文时报人工智能语言模型自然语言处理VLM大语言模型计算机视觉视觉语言模型
文章目录~1.PayingMoreAttentiontoImage:ATraining-FreeMethodforAlleviatingHallucinationinLVLMs2.MTA-CLIP:Language-GuidedSemanticSegmentationwithMask-TextAlignment3.MarvelOVD:MarryingObjectRecognitionandVisi
- SQLite数据库管理与Android应用集成
含老司开挖掘机
本文还有配套的精品资源,点击获取简介:SQLite是一种轻量级的关系型数据库,适用于移动设备和单机应用。它内置了对SQL标准的支持,并提供丰富的数据操作功能。在Android开发中,SQLite是默认的数据库解决方案,可通过SQLiteOpenHelper和SQLiteDatabaseAPI进行管理。本教程将通过实践帮助理解SQLite数据库的创建、管理和使用,以及如何将其与Android应用集成
- 大模型LLM面试常见算法题-包括Attention和Transformer常见面试题
剑圣土豆
算法面试大模型学习自然语言处理transformer算法nlp自然语言处理面试深度学习人工智能
大模型:位置编码有哪些?介绍LoRA与QLoRARAG和微调的区别是什么?哪些因素会导致LLM的偏见?什么是思维链(CoT)提示?Tokenizer的实现方法及原理解释一下大模型的涌现能力?解释langchainAgent的概念langchain有哪些替代方案?RLHF完整训练过程是什么?为什么RLHF的效果这么好?RLHF使用的训练数据是什么样的?RAG和微调的区别是什么?有了解过什么是稀疏微调
- Transformer、BERT、GPT、T5、LLM(大语言模型),以及它们在实际行业中的运用
Funhpc_huachen
transformerbertgpt语言模型深度学习
作为AI智能大模型的专家训练师,我将从主流模型框架的角度来分析其核心技术特点及其在不同实际行业中的应用。我们重点讨论以下几个主流模型框架:Transformer、BERT、GPT、T5、LLM(大语言模型),以及它们在实际行业中的运用。1.Transformer框架Transformer是一种基础的深度学习模型架构,由Google于2017年提出。它引入了注意力机制(Self-Attention)
- 大模型推理框架 RTP-LLM 架构解析
阿里技术
架构LLM推理阿里巴巴RPT
RTP-LLM是阿里巴巴智能引擎团队推出的大模型推理框架,支持了包括淘宝、天猫、闲鱼、菜鸟、高德、饿了么、AE、Lazada等多个业务的大模型推理场景。RTP-LLM与当前广泛使用的多种主流模型兼容,使用高性能的CUDAkernel,包括PagedAttention、FlashAttention、FlashDecoding等,支持多模态、LoRA、P-Tuning、以及WeightOnly动态量化
- Transformer+目标检测,这一篇入门就够了
BIT可达鸭
▶深度学习-计算机视觉transformer深度学习目标检测计算机视觉自然语言处理
VisionTransformerforObjectDetection本文作者:Encoder-Decoder简介:Encoder-Decoder的缺陷:Attention机制:Self-Attention机制:Multi-HeadAttention:Transformer结构:图像分类之ViT:图像分类之PyramidViT:目标检测之DETR:目标检测之DeformableDETR:本文作者:
- GLM-4 (1) - 推理+概览
戴昊光
人工智能languagemodelnlppython
系列文章目录GLM-4(1)-推理+概览GLM-4(2)-RoPEGLM-4(3)-GLMBlockGLM-4(4)-SelfAttentionGLM-4(5)-API&FunctionCallingGLM-4(6)-KVCache/Prefill&Decode文章目录系列文章目录前言一、环境安装&跑通demo二、Tokenizer三、configsmodelconfiggenerationcon
- 昇腾Ascend C算子开发学习笔记
回到唐朝当王爷
c语言学习笔记
2024年7月18日华为上研院培训笔记记录,感觉老师讲的还是很不错的昇腾AscendC算子开发学习笔记昇腾处理器的常用算子库核心融合算子库:核心融合算子库是华为昇腾AI处理器提供的基本算子库,包含了各种常用的深度学习算子,可以高效地执行各种神经网络计算任务。该库的设计旨在充分发挥昇腾AI芯片的计算能力,优化计算性能和资源利用率。FlashAttention类,MOEFFN类NN算子库:NN(Neu
- 【笔记】Encoder-Decoder模型
808130260
python/机器学习
Encoder-DecoderFrameworkEncoder-DecoderEncoderDecoderDecoderwithAttention参考Encoder-DecoderEncoder输入:X=(x1,x2,...,xTx)X=(x_1,x_2,...,x_{T_x})X=(x1,x2,...,xTx)输出:上下文向量(contextvector)ccc步骤:ht=f(xt,ht−1)c
- 6、关于Medical-Transformer
安逸sgr
Transformertransformer深度学习人工智能计算机视觉
6、关于Medical-TransformerAxial-Attention原文链接:Axial-attentionMedical-Transformer原文链接:Medical-TransformerMedical-Transformer实际上是Axial-Attention在医学领域的运行,只是在这基础上增加了门机制,实际上也就是在原来Axial-attention基础之上增加权重机制,虚弱位
- Image Super-Resolution with Cross-Scale Non-Local Attention and Exhaustive Self-Exemplars Mining
phoenix@Capricornus
Paperreading深度学习
Cross-ScaleNon-Local(CS-NL)Attention文中最重要的跨尺度非局部模块就是公式(4),这里内积通过滤波实现,图中的Deconvolution实际上是转置卷积,解卷积和转置卷积是完全不同的概念。公式(4)通过如下图理解一目了然,本来可以画个图一清二楚,偏不画。
- GreenDao_基本配置和使用
这个Bug有点难搞
androidandroidandroidstudio数据库
核心类介绍1.DaoMaster它持有数据库对象(SQLiteDataBase),并且提供了创建和删除表的静态方法。有两个内部类,OpenHelper、DevOpenHelper实现SQLiteOpenHelper,用来创建数据库表结构。2.DaoSession:DaoSession用来管理Dao对象,可通过get方法,获取XXDao对象,进行对表的基本操作。DaoSession本身也提供了一些基
- 2单元复盘
黄静怡
Part11,从本单元中我学到的最重要的理念精读Weshouldpayattentiontosafety2,我在本片文章/音频/视频中学到的怦然心动的单词textAtextB3,在本片文章/音频/视频中我最喜欢的一句话(精读)textA:Allofusprisoners,inthistimeofourtroubles.textB:Iwastearfullyrelievedthatithadonly
- [论文笔记] LLM模型剪枝
心心喵
论文笔记论文阅读剪枝算法
AttentionIsAllYouNeedButYouDon’tNeedAllOfItForInferenceofLargeLanguageModelsLLaMA2在剪枝时,跳过ffn和跳过fulllayer的效果差不多。相比跳过ffn/fulllayer,跳过attentionlayer的影响会更小。跳过attentionlayer:7B/13B从100%参数剪枝到66%,平均指标只下降1.7~
- 图神经网络实战(18)——消息传播神经网络
盼小辉丶
图神经网络从入门到项目实战pytorch深度学习图神经网络
图神经网络实战(18)——消息传播神经网络0.前言1.消息传播神经网络2.实现MPNN框架小结系列链接0.前言我们已经学习了多种图神经网络(GraphNeuralNetworks,GNN)变体,包括图卷积网络(GraphConvolutionalNetwork,GCN)、图注意力网络(GraphAttentionNetworks,GAT)和GraphSAGE等。在本节中,我们将对这些变体GNN结构
- Transformer面试真题详解——覆盖99%的Transformer面试问题(建议收藏)
爱睡觉的咋
LLMtransformer深度学习人工智能
文章目录1.请简述一下Transformer的基本结构和原理2.Transformer为什么使用多头注意力机制3.Transformer计算attention为什么选择点乘而不是加法?两个计算复杂度和效果上有什么区别?4.为什么在softmax之后要对attention进行scaled(为什么除以d_k的平方根)5.在计算attentionscore时,如何对padding做mask操作6.简单介
- 095.Pay close attention to the bottom right corner
飞帅记忆
095、Paycloseattentiontothebottomrightcorner仔细看右下角Paycloseattentiontotheblackboard!认真看黑板catchone‘sattention吸引注意Iwavedtocatchtheattentionofthewaiter.我挥手想引起服务员的注意turnone’sattentiontoIturnmyattentiontothe
- 【HuggingFace Transformers】BertIntermediate 和 BertPooler源码解析
CS_木成河
HuggingFace深度学习人工智能bertpython大模型Transformer
BertIntermediate和BertPooler源码解析1.介绍1.1位置与功能1.2相似点与不同点2.源码解析2.1BertIntermediate源码解析2.2BertPooler源码解析1.介绍1.1位置与功能(1)BertIntermediate位置:位于BertLayer的注意力层(BertSelfAttention)和输出层(BertOutput)之间。功能:它执行一个线性变换(
- unet各模块内容的理解(包含注意力机制、残差、以及数据维度的变化)
云梦之上
#扩散模型系统性学习人工智能神经网络pytorch
文章目录attention机制Unet的各个模块的设计①残差块②下块做一次残差,做一次自注意力③上块:这里做了skipconnect,做一次残差,做一次注意力④中块:做两次残差和一次自注意力⑤上采样:通道数不变,长宽翻两倍⑥下采样:通道数不变,长宽缩小到原来的一半整个unet模块unet模块的示意图参考的unet代码unet代码attention机制参考内容:超详细图解Self-Attention
- 2019-09-23 A lovable eccentric
RoadToGood
Trueeccentricsneverdeliberatelysetouttodrawattentiontothemselves.Theydisregardsocialconventionswithoutbeingconsciousthattheyaredoinganythingextraordinary.Thisinvariablywinsthemtheloveandrespectofother
- 自己设计一个Transformer模型
郑不凡
transformer自然语言处理机器翻译
Transformer模型在2017年被Google提出,直接基于self-attention结构,不再依赖于RNN、LSTM或者CNN,是一种Seg2Seg模型。近些年提出了许多基于Transformer的模型,有学者甚至将这一类模型称为基础模型。该模型的原始论文为AttentionIsAllYouNeed。0.如何设计Transformer阅读该部分需要有Attention基础Transfor
- MasaCtrl:Tuning-free mutual self-attention control for consistent image synthesis and editing
Kun Li
图像视频生成大模型stablediffusion
https://github.com/TencentARC/MasaCtrl/issues/13https://github.com/TencentARC/MasaCtrl/issues/13QuestionaboutMask·Issue#31·TencentARC/MasaCtrl·GitHub
- 「Apollo」直接在docker内部安装miniconda失败
Liiipseoroinis
ApolloUbuntudockerlinux
ATTENTION:因为公司原因,该条blog展示的解决方法可能仅适用于本人,作为debug记录背景安装失败的步骤:从conda官网下载了安装conda的sh文件Miniconda3-py37_4.11.0-Linux-x86_64.sh直接在docker内部执行sudo./Miniconda3-py37_4.11.0-Linux-x86_64.sh;其中安装路径写的是docker内部的路径,并且
- YOLOv10改进 | 独家创新- 注意力篇 | YOLOv10引入结合EMAttention和ParNetAttention形成全新的EPA注意力机制和C2f_EPA(全网独家创新)
小李学AI
YOLOv10有效涨点专栏YOLO深度学习计算机视觉人工智能目标检测机器学习神经网络
1.EPAAttention介绍EPAAttention注意力机制综合了EMAttention和ParNetAttention的优势,能够更有效地提取图像特征。(1).综合性与多样性EPAAttention结合了两种不同的注意力机制,充分利用了EMAttention的分组归一化和特征增强能力,以及ParNetAttention的空间注意力和全局特征提取能力。通过这种多样化的组合,EPAAttent
- 爆改yolov8|利用BSAM改进YOLOv8,高效涨点
不想敲代码!!!
爆改yolov8即插即用YOLOyolov8目标检测人工智能深度学习
1,本文介绍BSAM基于CBAM进行改进,经实测在多个数据集上都有涨点。BSAM(BiLevelSpatialAttentionModule)是一个用于提升深度学习模型在空间特征处理中的能力的模块。它主要通过双层注意力机制来增强模型对重要空间信息的关注,从而提升任务性能。核心特点:双层空间注意力:BSAM结合了两个层次的注意力机制——全局和局部。全局注意力捕捉图像或特征图的整体信息,而局部注意力则
- 爆改YOLOv8 | yolov8添加GAM注意力机制
不想敲代码!!!
爆改yolov8即插即用YOLOyolov8目标检测人工智能计算机视觉
1,本文介绍GAM(GlobalAttentionMechanism)旨在改进传统注意力机制的不足,特别是在通道和空间维度上的信息保留问题。它通过顺序的通道-空间注意力机制来解决这些问题。以下是GAM的关键设计和实现细节:通道注意力子模块:3D排列:使用3D排列来在三个维度上保留信息,这种方法有助于捕捉更多维度的特征。两层MLP:通过一个两层的多层感知机(MLP)增强跨维度的通道-空间依赖性,提升
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIlinuxPHPandroid
╔-----------------------------------╗┆
- zookeeper admin 笔记
braveCS
zookeeper
Required Software
1) JDK>=1.6
2)推荐使用ensemble的ZooKeeper(至少3台),并run on separate machines
3)在Yahoo!,zk配置在特定的RHEL boxes里,2个cpu,2G内存,80G硬盘
数据和日志目录
1)数据目录里的文件是zk节点的持久化备份,包括快照和事务日
- Spring配置多个连接池
easterfly
spring
项目中需要同时连接多个数据库的时候,如何才能在需要用到哪个数据库就连接哪个数据库呢?
Spring中有关于dataSource的配置:
<bean id="dataSource" class="com.mchange.v2.c3p0.ComboPooledDataSource"
&nb
- Mysql
171815164
mysql
例如,你想myuser使用mypassword从任何主机连接到mysql服务器的话。
GRANT ALL PRIVILEGES ON *.* TO 'myuser'@'%'IDENTIFIED BY 'mypassword' WI
TH GRANT OPTION;
如果你想允许用户myuser从ip为192.168.1.6的主机连接到mysql服务器,并使用mypassword作
- CommonDAO(公共/基础DAO)
g21121
DAO
好久没有更新博客了,最近一段时间工作比较忙,所以请见谅,无论你是爱看呢还是爱看呢还是爱看呢,总之或许对你有些帮助。
DAO(Data Access Object)是一个数据访问(顾名思义就是与数据库打交道)接口,DAO一般在业
- 直言有讳
永夜-极光
感悟随笔
1.转载地址:http://blog.csdn.net/jasonblog/article/details/10813313
精华:
“直言有讳”是阿里巴巴提倡的一种观念,而我在此之前并没有很深刻的认识。为什么呢?就好比是读书时候做阅读理解,我喜欢我自己的解读,并不喜欢老师给的意思。在这里也是。我自己坚持的原则是互相尊重,我觉得阿里巴巴很多价值观其实是基本的做人
- 安装CentOS 7 和Win 7后,Win7 引导丢失
随便小屋
centos
一般安装双系统的顺序是先装Win7,然后在安装CentOS,这样CentOS可以引导WIN 7启动。但安装CentOS7后,却找不到Win7 的引导,稍微修改一点东西即可。
一、首先具有root 的权限。
即进入Terminal后输入命令su,然后输入密码即可
二、利用vim编辑器打开/boot/grub2/grub.cfg文件进行修改
v
- Oracle备份与恢复案例
aijuans
oracle
Oracle备份与恢复案例
一. 理解什么是数据库恢复当我们使用一个数据库时,总希望数据库的内容是可靠的、正确的,但由于计算机系统的故障(硬件故障、软件故障、网络故障、进程故障和系统故障)影响数据库系统的操作,影响数据库中数据的正确性,甚至破坏数据库,使数据库中全部或部分数据丢失。因此当发生上述故障后,希望能重构这个完整的数据库,该处理称为数据库恢复。恢复过程大致可以分为复原(Restore)与
- JavaEE开源快速开发平台G4Studio v5.0发布
無為子
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V5.0版本已经正式发布。
访问G4Studio网站
http://www.g4it.org
2013-04-06 发布G4Studio_V5.0版本
功能新增
(1). 新增了调用Oracle存储过程返回游标,并将游标映射为Java List集合对象的标
- Oracle显示根据高考分数模拟录取
百合不是茶
PL/SQL编程oracle例子模拟高考录取学习交流
题目要求:
1,创建student表和result表
2,pl/sql对学生的成绩数据进行处理
3,处理的逻辑是根据每门专业课的最低分线和总分的最低分数线自动的将录取和落选
1,创建student表,和result表
学生信息表;
create table student(
student_id number primary key,--学生id
- 优秀的领导与差劲的领导
bijian1013
领导管理团队
责任
优秀的领导:优秀的领导总是对他所负责的项目担负起责任。如果项目不幸失败了,那么他知道该受责备的人是他自己,并且敢于承认错误。
差劲的领导:差劲的领导觉得这不是他的问题,因此他会想方设法证明是他的团队不行,或是将责任归咎于团队中他不喜欢的那几个成员身上。
努力工作
优秀的领导:团队领导应该是团队成员的榜样。至少,他应该与团队中的其他成员一样努力工作。这仅仅因为他
- js函数在浏览器下的兼容
Bill_chen
jquery浏览器IEDWRext
做前端开发的工程师,少不了要用FF进行测试,纯js函数在不同浏览器下,名称也可能不同。对于IE6和FF,取得下一结点的函数就不尽相同:
IE6:node.nextSibling,对于FF是不能识别的;
FF:node.nextElementSibling,对于IE是不能识别的;
兼容解决方式:var Div = node.nextSibl
- 【JVM四】老年代垃圾回收:吞吐量垃圾收集器(Throughput GC)
bit1129
垃圾回收
吞吐量与用户线程暂停时间
衡量垃圾回收算法优劣的指标有两个:
吞吐量越高,则算法越好
暂停时间越短,则算法越好
首先说明吞吐量和暂停时间的含义。
垃圾回收时,JVM会启动几个特定的GC线程来完成垃圾回收的任务,这些GC线程与应用的用户线程产生竞争关系,共同竞争处理器资源以及CPU的执行时间。GC线程不会对用户带来的任何价值,因此,好的GC应该占
- J2EE监听器和过滤器基础
白糖_
J2EE
Servlet程序由Servlet,Filter和Listener组成,其中监听器用来监听Servlet容器上下文。
监听器通常分三类:基于Servlet上下文的ServletContex监听,基于会话的HttpSession监听和基于请求的ServletRequest监听。
ServletContex监听器
ServletContex又叫application
- 博弈AngularJS讲义(16) - 提供者
boyitech
jsAngularJSapiAngularProvider
Angular框架提供了强大的依赖注入机制,这一切都是有注入器(injector)完成. 注入器会自动实例化服务组件和符合Angular API规则的特殊对象,例如控制器,指令,过滤器动画等。
那注入器怎么知道如何去创建这些特殊的对象呢? Angular提供了5种方式让注入器创建对象,其中最基础的方式就是提供者(provider), 其余四种方式(Value, Fac
- java-写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
bylijinnan
java
public class CommonSubSequence {
/**
* 题目:写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
* 写一个版本算法复杂度O(N^2)和一个O(N) 。
*
* O(N^2):对于a中的每个字符,遍历b中的每个字符,如果相同,则拷贝到新字符串中。
* O(
- sqlserver 2000 无法验证产品密钥
Chen.H
sqlwindowsSQL ServerMicrosoft
在 Service Pack 4 (SP 4), 是运行 Microsoft Windows Server 2003、 Microsoft Windows Storage Server 2003 或 Microsoft Windows 2000 服务器上您尝试安装 Microsoft SQL Server 2000 通过卷许可协议 (VLA) 媒体。 这样做, 收到以下错误信息CD KEY的 SQ
- [新概念武器]气象战争
comsci
气象战争的发动者必须是拥有发射深空航天器能力的国家或者组织....
原因如下:
地球上的气候变化和大气层中的云层涡旋场有密切的关系,而维持一个在大气层某个层次
- oracle 中 rollup、cube、grouping 使用详解
daizj
oraclegroupingrollupcube
oracle 中 rollup、cube、grouping 使用详解 -- 使用oracle 样例表演示 转自namesliu
-- 使用oracle 的样列库,演示 rollup, cube, grouping 的用法与使用场景
--- ROLLUP , 为了理解分组的成员数量,我增加了 分组的计数 COUNT(SAL)
- 技术资料汇总分享
Dead_knight
技术资料汇总 分享
本人汇总的技术资料,分享出来,希望对大家有用。
http://pan.baidu.com/s/1jGr56uE
资料主要包含:
Workflow->工作流相关理论、框架(OSWorkflow、JBPM、Activiti、fireflow...)
Security->java安全相关资料(SSL、SSO、SpringSecurity、Shiro、JAAS...)
Ser
- 初一下学期难记忆单词背诵第一课
dcj3sjt126com
englishword
could 能够
minute 分钟
Tuesday 星期二
February 二月
eighteenth 第十八
listen 听
careful 小心的,仔细的
short 短的
heavy 重的
empty 空的
certainly 当然
carry 携带;搬运
tape 磁带
basket 蓝子
bottle 瓶
juice 汁,果汁
head 头;头部
- 截取视图的图片, 然后分享出去
dcj3sjt126com
OSObjective-C
OS 7 has a new method that allows you to draw a view hierarchy into the current graphics context. This can be used to get an UIImage very fast.
I implemented a category method on UIView to get the vi
- MySql重置密码
fanxiaolong
MySql重置密码
方法一:
在my.ini的[mysqld]字段加入:
skip-grant-tables
重启mysql服务,这时的mysql不需要密码即可登录数据库
然后进入mysql
mysql>use mysql;
mysql>更新 user set password=password('新密码') WHERE User='root';
mysq
- Ehcache(03)——Ehcache中储存缓存的方式
234390216
ehcacheMemoryStoreDiskStore存储驱除策略
Ehcache中储存缓存的方式
目录
1 堆内存(MemoryStore)
1.1 指定可用内存
1.2 驱除策略
1.3 元素过期
2 &nbs
- spring mvc中的@propertysource
jackyrong
spring mvc
在spring mvc中,在配置文件中的东西,可以在java代码中通过注解进行读取了:
@PropertySource 在spring 3.1中开始引入
比如有配置文件
config.properties
mongodb.url=1.2.3.4
mongodb.db=hello
则代码中
@PropertySource(&
- 重学单例模式
lanqiu17
单例Singleton模式
最近在重新学习设计模式,感觉对模式理解更加深刻。觉得有必要记下来。
第一个学的就是单例模式,单例模式估计是最好理解的模式了。它的作用就是防止外部创建实例,保证只有一个实例。
单例模式的常用实现方式有两种,就人们熟知的饱汉式与饥汉式,具体就不多说了。这里说下其他的实现方式
静态内部类方式:
package test.pattern.singleton.statics;
publ
- .NET开源核心运行时,且行且珍惜
netcome
java.net开源
背景
2014年11月12日,ASP.NET之父、微软云计算与企业级产品工程部执行副总裁Scott Guthrie,在Connect全球开发者在线会议上宣布,微软将开源全部.NET核心运行时,并将.NET 扩展为可在 Linux 和 Mac OS 平台上运行。.NET核心运行时将基于MIT开源许可协议发布,其中将包括执行.NET代码所需的一切项目——CLR、JIT编译器、垃圾收集器(GC)和核心
- 使用oscahe缓存技术减少与数据库的频繁交互
Everyday都不同
Web高并发oscahe缓存
此前一直不知道缓存的具体实现,只知道是把数据存储在内存中,以便下次直接从内存中读取。对于缓存的使用也没有概念,觉得缓存技术是一个比较”神秘陌生“的领域。但最近要用到缓存技术,发现还是很有必要一探究竟的。
缓存技术使用背景:一般来说,对于web项目,如果我们要什么数据直接jdbc查库好了,但是在遇到高并发的情形下,不可能每一次都是去查数据库,因为这样在高并发的情形下显得不太合理——
- Spring+Mybatis 手动控制事务
toknowme
mybatis
@Override
public boolean testDelete(String jobCode) throws Exception {
boolean flag = false;
&nbs
- 菜鸟级的android程序员面试时候需要掌握的知识点
xp9802
android
熟悉Android开发架构和API调用
掌握APP适应不同型号手机屏幕开发技巧
熟悉Android下的数据存储
熟练Android Debug Bridge Tool
熟练Eclipse/ADT及相关工具
熟悉Android框架原理及Activity生命周期
熟练进行Android UI布局
熟练使用SQLite数据库;
熟悉Android下网络通信机制,S